题目内容
已知数列{an}中,a1=2,其前n项和为Sn,满足
=
+
.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足bn=
,数列{bn}的前n项和为Tn,求证Tn<
.
| Sn+1 |
| Sn |
| 2 |
(I)求数列{an}的通项公式;
(II)设数列{bn}满足bn=
| 2 |
| Sn+1-2 |
| 3 |
| 4 |
考点:数列与不等式的综合,数列递推式
专题:综合题,等差数列与等比数列
分析:(I)先证明{
}是以
=
为首项,
为公差的等差数列,可得Sn=2n2,利用当n≥2时,an=Sn-Sn-1,即可求数列{an}的通项公式;
(II)利用裂项法求和,即可证得结论.
| Sn |
| S1 |
| 2 |
| 2 |
(II)利用裂项法求和,即可证得结论.
解答:
(I)解:∵
=
+
∴
-
=
∴{
}是以
=
为首项,
为公差的等差数列
∴
=
+
•(n-1)=
n
∴Sn=2n2
当n≥2时,an=Sn-Sn-1=4n-2;当n=1时,a1=2也满足
∴数列{an}的通项公式为an=4n-2;
(II)证明:由(I)知bn=
=
(
-
)
∴Tn=b1+b2+…+bn=
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)=
(
-
-
)<
.
| Sn+1 |
| Sn |
| 2 |
∴
| Sn+1 |
| Sn |
| 2 |
∴{
| Sn |
| S1 |
| 2 |
| 2 |
∴
| Sn |
| 2 |
| 2 |
| 2 |
∴Sn=2n2
当n≥2时,an=Sn-Sn-1=4n-2;当n=1时,a1=2也满足
∴数列{an}的通项公式为an=4n-2;
(II)证明:由(I)知bn=
| 1 |
| n2-2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
点评:本题考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关题目
若关于x的一元二次不等式kx2+2x-1<0的解集是R,则k的取值范围是 ( )
| A、k<-1 | B、k<0 |
| C、-1<k<0 | D、k>1 |
已知集合M={0,2,4,6},集合Q={0,1,3,5},则M∪Q等于( )
| A、{0} |
| B、{0,1,2,3,4,5,6} |
| C、{1,2,3,4,5,6,} |
| D、{0,3,4,5,6} |
f(x)是定义在[-6,6]上的偶函数,且f(4)>f(2),则下列各式一定成立的是( )
| A、f(0)<f(6) |
| B、f(3)>f(2) |
| C、f(2)<f(-4) |
| D、f(-5)>f(-4) |