题目内容
| A、16km | ||
B、8
| ||
C、16
| ||
| D、8km |
考点:解三角形的实际应用
专题:应用题,解三角形
分析:在△ABD中,设BD=x,利用余弦定理求得关于x的方程求得x,进而利用正弦定理求得BC.
解答:
解:在△ABD中,设BD=x,
则BA2=BD2+AD2-2BD•ADcos∠BDA
即142=x2+102-20xcos60°,
整理得x2-10x-96=0,
解之,得x1=16,x2=-6(舍去)
由正弦定理,得
=
,
所以BC=
•sin30°=8
(km),
故选:B.
则BA2=BD2+AD2-2BD•ADcos∠BDA
即142=x2+102-20xcos60°,
整理得x2-10x-96=0,
解之,得x1=16,x2=-6(舍去)
由正弦定理,得
| BC |
| sin∠CDB |
| BD |
| sin∠BCD |
所以BC=
| 16 |
| sin135° |
| 2 |
故选:B.
点评:本题主要考查了解三角形中的实际应用.以及正弦定理和余弦定理的运用.
练习册系列答案
相关题目
光线经过一层玻璃,其强度要损失掉10%,把n块玻璃重叠在一起,通过它的强度减弱到原来的
以下,则n满足的关系式为( )
| 1 |
| 3 |
A、(1-10%)n-1<
| ||
B、(1-10%)n<
| ||
C、(1-10%)n+1<
| ||
D、(1+10%)n<
|
如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+2x+a的零点所在的区间是( )
A、(
| ||||
| B、(1,2) | ||||
C、(
| ||||
| D、(2,3) |