题目内容

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2为双曲线的左右焦点,若在双曲线的右焦点上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答: 解:设P点的横坐标为x
∵|PF1|=3|PF2|,P在双曲线右支(x≥a)
根据双曲线的第二定义,可得3e(x-
a2
c
)=e(x+
a2
c

∴ex=2a
∵x≥a,∴ex≥ea
∴2a≥ea,∴e≤2
∵e>1,∴1<e≤2
故答案为:1<e≤2.
点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网