题目内容

已知函数f(x)=
2x+1
x2
,x∈(-∞,-
1
2
)
ln(x+1),x∈[-
1
2
,+∞)
g(x)=x2-4x-4.设b为实数,若存在实数a,使得f(a)+g(b)=0,则实数b的取值范围是(  )
A、[-1,5]
B、(-∞,-1]
C、[-1,+∞)
D、(-∞,5]
考点:分段函数的应用
专题:计算题,函数的性质及应用
分析:由分段函数的定义分别求各部分的函数值的取值范围,从而得到函数f(x)的值域,从而化为最值问题即可.
解答: 解:当x∈(-∞,-
1
2
)
时,
f(x)=(
1
x
+1)2-1∈[-1,0)

x∈[-
1
2
,+∞)
时,
f(x)=ln(x+1)∈[-ln2,+∞),
所以f(x)∈[-1,+∞),
所以只要g(b)∈(-∞,1]即可,
即(b-2)2-8∈(-∞,1],
解得b∈[-1,5].
故选A.
点评:本题考查了分段函数的应用及配方法求最值的应用,同时考查了恒成立问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网