题目内容
已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.
(1)若a=1,b=3,按上述规则操作三次,则第三次扩充所得的新数是 ;
(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m+n的值为 .
(1)若a=1,b=3,按上述规则操作三次,则第三次扩充所得的新数是
(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),则m+n的值为
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:(1)第一次:c=1×3+1+3=7,第二次:c=3×7+3+7=31,第三次:c=31×7+7+31=255;
(2)c=pq+q+q=(p+1)(q+1)-1,从而类比推导前6次.
(2)c=pq+q+q=(p+1)(q+1)-1,从而类比推导前6次.
解答:
解:(1)第一次:c=1×3+1+3=7,
第二次:c=3×7+3+7=31,
第三次:c=31×7+7+31=255;
(2)第一次:c=pq+q+q=(p+1)(q+1)-1,
第二次:c=[(p+1)(q+1)-1+1][p+1]-1
=(p+1)2(q+1)-1,
第三次:c=[(p+1)(q+1)-1+1][(p+1)2(q+1)-1+1]-1
=(p+1)3(q+1)2-1
第四次:c=(p+1)5(q+1)3-1,
第五次:c=(p+1)8(q+1)5-1,
第六次:c=(p+1)13(q+1)8-1,
故m+n=13+8=21.
故答案为:255,21.
第二次:c=3×7+3+7=31,
第三次:c=31×7+7+31=255;
(2)第一次:c=pq+q+q=(p+1)(q+1)-1,
第二次:c=[(p+1)(q+1)-1+1][p+1]-1
=(p+1)2(q+1)-1,
第三次:c=[(p+1)(q+1)-1+1][(p+1)2(q+1)-1+1]-1
=(p+1)3(q+1)2-1
第四次:c=(p+1)5(q+1)3-1,
第五次:c=(p+1)8(q+1)5-1,
第六次:c=(p+1)13(q+1)8-1,
故m+n=13+8=21.
故答案为:255,21.
点评:本题考查了学生对新知识的接受能力及合情推理,属于基础题.
练习册系列答案
相关题目
设集合A={3,5,6,8},B={4,5,7,8},则A∩B=( )
| A、{5,8} |
| B、{7,8} |
| C、{5,3} |
| D、{4,6} |
已知函数f(x)=
,(a>0,a≠1).若数列{an}满足an=f(n)且an+1>an,n∈N*,则实数a的取值范围是( )
|
| A、(7,8) |
| B、[7,8) |
| C、(4,8) |
| D、(1,8) |
已知f(x)=
,则f{f(-2)}的值为( )
|
| A、8 | B、9 | C、2 | D、3 |
已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n-2)2的取值范围是( )
A、[2,
| ||||
B、(
| ||||
| C、[2,5] | ||||
| D、(2,5) |