题目内容

4.对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使$\overrightarrow{OM}•\overrightarrow{ON}=0(O$是坐标原点),则x0必然在下面哪个区间内?(  )
A.$(\frac{1}{e^3},\frac{1}{e^2})$B.$(\frac{1}{e^2},\frac{1}{e})$C.$(\frac{1}{e},\frac{1}{{\sqrt{e}}})$D.$(\frac{1}{{\sqrt{e}}},1)$

分析 问题转化为x0是函数h(x)=x+lnx的零点,根据函数的零点的判断定理求出x0的范围即可.

解答 解:由题意得:$\frac{{y}_{0}}{{x}_{0}}$=$\frac{l{nx}_{0}}{{x}_{0}}$=-1,
即lnx0+x0=0,
即x0是函数h(x)=x+lnx的零点,
由h(x)在(0,+∞)是连续的递增函数,
且h($\frac{1}{e}$)=-1+$\frac{1}{e}$<0,h($\frac{1}{\sqrt{e}}$)=$\frac{2-\sqrt{e}}{2\sqrt{e}}$>0,
得h(x)在($\frac{1}{e}$,$\frac{1}{\sqrt{e}}$)有零点,
即x0∈($\frac{1}{e}$,$\frac{1}{\sqrt{e}}$),
故选:C.

点评 本题考查了函数零点的判断定理,考查对数函数的性质以及转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网