题目内容
4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为( )| A. | 0° | B. | 45° | C. | 60° | D. | 90° |
分析 把正方体的平面展开图还原成正方体ADNE-CMFB,由此能求出AM与BN所成角的大小.
解答 解:如图,
把正方体的平面展开图还原成正方体ADNE-CMFB,
∵CD∥BN,CD⊥AM,
∴AM⊥BN,
∴在这个正方体中,AM与BN所成角的大小为90°.
故选:D.
点评 本题考查异面直线所成角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
6.某单位共有10名员工,他们某年的收入如表:
(Ⅰ)从该单位中任取2人,此2人中年薪收入高于5万的人数记为X,求X的分布列和期望;
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
预测该员工第五年的年薪为多少?
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.
| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
| 工作年限 | 1 | 2 | 3 | 4 |
| 年薪(万元) | 3.0 | 4.2 | 5.6 | 7.2 |
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.
19.已知函数f(x)=x2+(2a-1)x+1,若对区间(2,+∞)内的任意两个不等实数x1,x2都有$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{{x}_{1}-{x}_{2}}$>0,则实数a的取值范围是( )
| A. | (-∞,-$\frac{1}{2}$] | B. | [-$\frac{5}{2}$,+∞) | C. | [-$\frac{1}{2}$,+∞) | D. | (-∞,$-\frac{5}{2}$] |
9.已知直线ax+y+1=0与x+(a+$\frac{3}{2}$)y+2=0平行,则实数a=( )
| A. | $\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$或-2 | D. | 2或-$\frac{1}{2}$ |
16.已知X~N(5,1),若P(5<X≤6)=0.3413,P(3<X≤7)=0.9544,则P(6<X≤7)=( )
| A. | 0.3413 | B. | 0.4772 | C. | 0.8185 | D. | 0.1359 |