题目内容
6.某单位共有10名员工,他们某年的收入如表:| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
| 工作年限 | 1 | 2 | 3 | 4 |
| 年薪(万元) | 3.0 | 4.2 | 5.6 | 7.2 |
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.
分析 (Ⅰ)根据题意,随机变量X的可能取值为0,1,2,
计算对应的概率值,写出X的分布列,计算数学期望值;
(Ⅱ)计算平均数,求出回归系数,写出线性回归方程,计算x=5时$\stackrel{∧}{y}$的值即可.
解答 解:(Ⅰ)年薪高于5万的有6人,低于或等于5万的有4人;
所以X的可能取值为0,1,2;
计算P(X=0)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{2}{15}$,P(X=1)=$\frac{{C}_{4}^{1}{•C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{8}{15}$,P(X=2)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$;
所以随机变量X的分布列为
| X | 0 | 1 | 2 |
| P | $\frac{2}{15}$ | $\frac{8}{15}$ | $\frac{1}{3}$ |
(Ⅱ)设xi,yi(i=1,2,3,4)分别表示工作年限及相应年薪,则
$\overline{x}$=$\frac{1}{4}$$\sum_{i=1}^{4}$xi=2.5,$\overline{y}$=$\frac{1}{4}$$\sum_{i=1}^{4}$yi=5
$\sum_{i=1}^{4}$${{(x}_{i}-\overline{x})}^{2}$=2.25+0.25+0.25+2.25=5,
$\sum_{i=1}^{4}$(xi-$\overline{x}$)(yi-$\overline{y}$)=(-1.5)×(-2)+(-0.5)×(-0.8)+0.5×0.6+1.5×2.2=7,
∴${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$=$\frac{7}{5}$=1.4,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx=5-1.4×2.5=1.5;
∴员工年薪与工作年限的线性回归方程为$\stackrel{∧}{y}$=1.4x+1.5.
当x=5时,$\stackrel{∧}{y}$=1.4×5+1.5=8.5,
预测该员工工作第5年时的年薪为8.5万元.
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了线性回归方程的应用问题,是中档题.
练习册系列答案
相关题目
1.在一次抽样调査中测得样本的6组数据,得到一个变量y关于x的回归方程模型,其对应的数值如表
(Ⅰ)请用相关系数r加以说明y与x之间存在线性相关关系(当|r|>0.81时,说明y与x之间具有线性相关关系);
(Ⅱ)根据(I )的判断结果,建立y关于x的回归方程并预测当x=9时,对应的y值为多少(b精确到0.01)
附参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,相关系数r公式为:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.
| x | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 3.00 | 2.48 | 2.08 | 1.86 | 1.48 | 1.10 |
(Ⅱ)根据(I )的判断结果,建立y关于x的回归方程并预测当x=9时,对应的y值为多少(b精确到0.01)
附参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,相关系数r公式为:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.
6.
已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )
| A. | $\frac{14}{3}$ | B. | $\frac{17}{3}$ | C. | $\frac{20}{3}$ | D. | 8 |
4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为( )

| A. | 0° | B. | 45° | C. | 60° | D. | 90° |