题目内容
16.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).(1)求$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.
分析 (1)根据对数的运算性质,可得lnx1=-lnx2,进而得到x1x2=1,进而得到$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$的值;
(2)不妨令x2>1,则x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,令g(x)=$\frac{1}{x}$+x+2lnx,x>1,可得答案
解答 解:(1)∵函数f(x)=|lnx|,x1≠x2且f(x1)=f(x2).
∴lnx1=-lnx2,即lnx1+lnx2=ln(x1•x2)=0,
即x1x2=1,
∴$\frac{{{x_1}{x_2}-1}}{{({{x_1}-1})({{x_2}-1})}}$=0
(2)不妨令x2>1,
则x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,
令g(x)=$\frac{1}{x}$+x+2lnx,x>1,
则g′(x)=-$\frac{1}{{x}^{2}}$+1+$\frac{2}{x}$=$\frac{{x}^{2}+2x-1}{{x}^{2}}$>0恒成立,
则g(x)在(1,+∞)上恒成立,
由g(1)=2,可得M≤2,
即M的最大值为2
点评 本题考查的知识点是函数恒成立问题,对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.
练习册系列答案
相关题目
6.若$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,则sin2α=( )
| A. | $-\frac{{2\sqrt{2}}}{9}$ | B. | $-\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{{4\sqrt{2}}}{9}$ | D. | $-\frac{4}{9}$ |
11.若双曲线上存在点P,使得P到两个焦点的距离之比为2:1,则称此双曲线存在“L点”,下列双曲线中存在“L点”的是( )
| A. | ${x^2}-\frac{y^2}{4}=1$ | B. | ${x^2}-\frac{y^2}{9}=1$ | C. | ${x^2}-\frac{y^2}{15}=1$ | D. | ${x^2}-\frac{y^2}{24}=1$ |
8.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为2,则此双曲线的渐近线方程为( )
| A. | y=±$\frac{1}{4}$x | B. | y=±$\frac{1}{3}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是( )
| A. | mn>0 | B. | m>1,且n>1 | C. | m>0,且n<0 | D. | m>0,且n>0 |
6.已知sin(π+α)=$\frac{1}{2}$,则cos(α-$\frac{3}{2}$π)的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |