题目内容

已知函数f(x)=(1-x)ex-1.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设g(x)=
f(x)
x
,x>-1且x≠0,证明:g(x)<1.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(Ⅰ)求函数的导数,利用函数的导数和最值之间的关系,即可求函数f(x)的最大值;
(Ⅱ)利用函数的 单调性,证明不等式.
解答: 解:(Ⅰ)f′(x)=-xex
当x∈(-∞,0)时,f′(x)>0,f(x)单调递增;
当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.
∴f(x)的最大值为f(0)=0.
(Ⅱ)由(Ⅰ)知,当x>0时,f(x)<0,g(x)<0<1.
当-1<x<0时,g(x)<1等价于设f(x)>x.
设h(x)=f(x)-x,
则h′(x)=-xex-1.
当x∈(-1,-0)时,0<-x<1,0<ex<1,
则0<-xex<1,
从而当x∈(-1,0)时,h′(x)<0,h(x)在(-1,0]单调递减.
当-1<x<0时,h(x)>h(0)=0,
即g(x)<1.
综上,总有g(x)<1.
点评:本题主要考查导数的应用,利用导数研究函数的最值是解决本题的关键,考查学生的计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网