题目内容

8.某人投篮一次投不中的概率是$\frac{1}{3}$,设投篮5次投中、投不中的次数分别是ξ、η,则事件“ξ<η”的概率为(  )
A.$\frac{11}{81}$B.$\frac{13}{81}$C.$\frac{15}{81}$D.$\frac{17}{81}$

分析 事件“ξ<η”包括5投0中,5投1中,5投2中三种情况,由此能求出事件“ξ<η”的概率.

解答 解:∵某人投篮一次投中的概率是$\frac{2}{3}$,设投篮5次投中、投不中的次数分别是ξ、η,
事件“ξ<η”包括5投0中,5投1中,5投2中三种情况,
∴事件“ξ<η”的概率:
p=${C}_{5}^{0}(\frac{1}{3})^{5}+{C}_{5}^{1}(\frac{2}{3})(\frac{1}{3})^{4}+{C}_{5}^{2}(\frac{2}{3})^{2}(\frac{1}{3})^{3}$=$\frac{17}{81}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网