题目内容
不等式|x-1|≥2的解集为( )
| A、{x|x≤-1或x≥3} |
| B、{x|x≥3} |
| C、{x|-1≤x≤3} |
| D、R |
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:由不等式|x-1|≥2可得 x-1≥2,或 x-1≤-2,由此求得它的解集.
解答:
解:由不等式|x-1|≥2可得 x-1≥2,或 x-1≤-2,
解得 x≥3,或x≤-1,
故选:A.
解得 x≥3,或x≤-1,
故选:A.
点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目
已知扇形的圆心角为
弧度,半径为2,则扇形的面积为( )
| 2π |
| 3 |
A、
| ||
B、
| ||
| C、2π | ||
D、
|
在等差数列{an}中,前15项的和S15=90,则a8为( )
| A、6 | B、3 | C、12 | D、4 |
若数列{2 an}是公比为q的等比数列,则( )
| A、{an}是公差为q的等差数列 |
| B、{an}是公差为2q的等差数列 |
| C、{an}是公差为log2q的等差数列 |
| D、{an}可能不是等差数列 |
将曲线的极坐标方程ρsinθ=4化为直角坐标方程为( )
| A、x-4=0 |
| B、y-4=0 |
| C、x+4=0 |
| D、y+4=0 |