题目内容
已知扇形的圆心角为
弧度,半径为2,则扇形的面积为( )
| 2π |
| 3 |
A、
| ||
B、
| ||
| C、2π | ||
D、
|
考点:弧长公式
专题:三角函数的求值
分析:利用扇形的面积计算公式即可得出.
解答:
解:S扇形=
R2l=
×22×
=
.
故选:D.
| 1 |
| 2 |
| 1 |
| 2 |
| 2π |
| 3 |
| 4π |
| 3 |
故选:D.
点评:本题考查了扇形的面积计算公式,属于基础题.
练习册系列答案
相关题目
在△ABC中,AB=3,AC=2,BC=
,则
•
=( )
| 10 |
| CA |
| AB |
A、
| ||
B、
| ||
C、-
| ||
D、-
|
二项式(x-
)9的展开式中x3的系数是( )
| 1 |
| x |
| A、84 | B、-84 |
| C、126 | D、-126 |
设△ABC的内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列,则角B的取值范围是( )
A、(0,
| ||
B、[
| ||
C、(0,
| ||
D、[
|
已知数列{an}满足an+1=
,a1=1,归纳出{an}的一个通项公式为( )
| an |
| 1+an |
A、an=
| ||
B、an=
| ||
C、an=
| ||
D、an=
|
设定点A(0,1),动点P(x,y)的坐标满足条件
,则|PA|的最小值为( )
|
A、
| ||||
B、
| ||||
| C、1 | ||||
D、
|
下列命题:
①命题“若x≠1,则x2-3x+2≠0”的逆否命题:“若x2-3x+2=0,则x=1”
②命题p:任意x∈R,x2+x+1≠0,则¬p:存在x∈R,x2+x+1=0
③“x>2”是“x2-3x+2>0”的充分不必要条件
④若p或q为真命题,则p,q均为真命题.
其中真命题的个数有( )
①命题“若x≠1,则x2-3x+2≠0”的逆否命题:“若x2-3x+2=0,则x=1”
②命题p:任意x∈R,x2+x+1≠0,则¬p:存在x∈R,x2+x+1=0
③“x>2”是“x2-3x+2>0”的充分不必要条件
④若p或q为真命题,则p,q均为真命题.
其中真命题的个数有( )
| A、4个 | B、3个 | C、2个 | D、1个 |
若f(x)与g(x)是定义在R上的可导函数,则“f′(x)=g′(x)”是“f(x)=g(x)”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分又不必要条件 |
不等式|x-1|≥2的解集为( )
| A、{x|x≤-1或x≥3} |
| B、{x|x≥3} |
| C、{x|-1≤x≤3} |
| D、R |