题目内容

由直线y=0,x=e,y=2x及曲线y=
2
x
所围成的封闭的图形的面积为(  )
A、3
B、3+2ln2
C、e2-3
D、e
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.
解答: 解:由y=2x及曲线y=
2
x
,可得交点坐标为(1,2),(-1,-2),
故所求图形的面积为S=
e
1
(2x-
2
x
)dx
=(x2-2lnx)
|
e
1
=e2-3.
故选:C.
点评:本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网