ÌâÄ¿ÄÚÈÝ
ÏÂÁÐ˵·¨£º
¢Ùº¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼äÊÇ[2£¬+¡Þ£©£»
¢ÚÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨x£©-f£¨-x£©ÊÇÆæº¯Êý£»
¢ÛÒÑÖªA={x|x2=1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòʵÊýmȡֵ¼¯ºÏÊÇ{1£¬-1}£»
¢Üº¯Êýf£¨x£©=-x|x|+1¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
£¾0£»
¢ÝÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
)¡Ý
£®
ÆäÖÐÕýÈ·µÄÊÇ £®£¨Ö»ÌîдÏàÓ¦µÄÐòºÅ£©
¢Ùº¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼äÊÇ[2£¬+¡Þ£©£»
¢ÚÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨x£©-f£¨-x£©ÊÇÆæº¯Êý£»
¢ÛÒÑÖªA={x|x2=1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòʵÊýmȡֵ¼¯ºÏÊÇ{1£¬-1}£»
¢Üº¯Êýf£¨x£©=-x|x|+1¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
| f(x1)-f(x2) |
| x2-x1 |
¢ÝÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
ÆäÖÐÕýÈ·µÄÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺
·ÖÎö£ºÈ·¶¨º¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼ä£¬¿ÉÅжϢ٣»¸ù¾Ýº¯ÊýÆæÅ¼ÐԵ͍Ò壬¿ÉÅжϢڣ»¸ù¾Ý¼¯ºÏ°üº¬¹ØÏµµÄ¶¨Ò壬Çó³öÂú×ãÌõ¼þµÄmÖµµÄ¼¯ºÏ£¬¿ÉÅжϢۣ»È·¶¨º¯Êýf£¨x£©=-x|x|+1µÄµ¥µ÷ÐÔ£¬¿ÉÅжϢܣ»È·¶¨º¯Êýf£¨x£©=2x2+1µÄ͹°¼ÐÔ£¬¿ÉÅжϢݣ®
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬º¯Êýy=|x+2|µÄµ¥µ÷ÔöÇø¼äÊÇ[-2£¬+¡Þ£©£¬¹Ê´íÎó£»
¶ÔÓÚ¢Ú£¬Éèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨-x£©+f£¨x£©=f£¨x£©+f£¨-x£©£¬¹Êf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨-x£©-f£¨x£©=-[f£¨x£©-f£¨-x£©]£¬¹Êf£¨x£©-f£¨-x£©ÊÇÆæº¯Êý£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬ÒÑÖªA={x|x2=1}={-1£¬1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòB⊆A£¬ÔòʵÊýmȡֵ¼¯ºÏÊÇ{1£¬-1£¬0}£¬¹Ê´íÎó£»
¶ÔÓڢܣ¬º¯Êýf£¨x£©=-x|x|+1ÊǶ¨ÒåÔÚRÉϵļõº¯Êý£¬¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
£¾0£¬¹ÊÕýÈ·£»
¶ÔÓڢݣ¬ÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵݼº¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
)£¼
£¬¹Ê´íÎó£®
¹ÊÕýÈ·µÄ˵·¨ÓУº¢Ú¢Ü£¬
¹Ê´ð°¸Îª£º¢Ú¢Ü
¶ÔÓÚ¢Ú£¬Éèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨-x£©+f£¨x£©=f£¨x£©+f£¨-x£©£¬¹Êf£¨x£©+f£¨-x£©ÊÇżº¯Êý£¬f£¨-x£©-f£¨x£©=-[f£¨x£©-f£¨-x£©]£¬¹Êf£¨x£©-f£¨-x£©ÊÇÆæº¯Êý£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬ÒÑÖªA={x|x2=1}={-1£¬1}£¬B={x|mx-1=0}£¬ÈôA¡ÉB=B£¬ÔòB⊆A£¬ÔòʵÊýmȡֵ¼¯ºÏÊÇ{1£¬-1£¬0}£¬¹Ê´íÎó£»
¶ÔÓڢܣ¬º¯Êýf£¨x£©=-x|x|+1ÊǶ¨ÒåÔÚRÉϵļõº¯Êý£¬¶ÔÓÚ¶¨ÒåÓòRÄÚÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐ
| f(x1)-f(x2) |
| x2-x1 |
¶ÔÓڢݣ¬ÒÑÖªf£¨x£©=2x2+1ÊǶ¨ÒåÔÚRÉϵݼº¯Êý£¬Ôò´æÔÚÇø¼äI£¬Âú×ãI⊆R£¬Ê¹µÃ¶ÔÓÚIÉÏÈÎÒâx1£¬x2£¬µ±x1¡Ùx2ʱ£¬ºãÓÐf(
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
¹ÊÕýÈ·µÄ˵·¨ÓУº¢Ú¢Ü£¬
¹Ê´ð°¸Îª£º¢Ú¢Ü
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ£¬ÆæÅ¼ÐÔ£¬Í¹°¼ÐÔ¼°¼¯ºÏµÄ°üº¬¹ØÏµµÄ¶¨Ò壬ÄѶÈÖеµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªµ¥µ÷µÝÔöµÄµÈ±ÈÊýÁÐ{an}ÖУ¬a2•a6=16£¬a3+a5=10£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSn=£¨¡¡¡¡£©
A¡¢2n-2-
| ||
B¡¢2n-1-
| ||
| C¡¢2n-1 | ||
| D¡¢2n+1-2 |