题目内容
过△ABC所在平面α外一点P,作PO⊥α,垂足为O,若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的( )
| A、垂心 | B、重心 | C、内心 | D、外心 |
考点:直线与平面垂直的性质,三角形五心
专题:数形结合,空间位置关系与距离
分析:连接AO并延长交BC于一点E,连接PO,由于PA,PB,PC两两垂直可以得到PA⊥面PBC,而BC?面PBC,可得BC⊥PA,由PO⊥平面ABC于O,BC?面ABC,PO⊥BC,可得BC⊥AE,同理可以证明才CH⊥AB,又BH⊥AC.故H是△ABC的垂心.
解答:
解:连接AO并延长交BC于一点E,连接PO,由于PA,PB,PC两两垂直可以得到PA⊥面PBC,而BC?面PBC,∴BC⊥PA,
∵PO⊥平面ABC于O,BC?面ABC,∴PO⊥BC,∴BC⊥平面APE,∵AE?面APE,∴BC⊥AE;
同理可以证明才CH⊥AB,又BH⊥AC.
∴H是△ABC的垂心.
故选:A.
∵PO⊥平面ABC于O,BC?面ABC,∴PO⊥BC,∴BC⊥平面APE,∵AE?面APE,∴BC⊥AE;
同理可以证明才CH⊥AB,又BH⊥AC.
∴H是△ABC的垂心.
故选:A.
点评:本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.
练习册系列答案
相关题目
已知⊙C的圆心在曲线y=
上,⊙C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是( )
| 2 |
| x |
| A、2 | B、3 | C、4 | D、8 |
已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(-2≤X≤2)等于( )
| A、0.477 |
| B、0.628 |
| C、0.954 |
| D、0.977 |