题目内容

13.如图,在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P为△ABC内一点,∠BPC=90°.       
(Ⅰ)若PB=1,求PA;
(Ⅱ)若∠APB=150°,求tan∠PBA.

分析 (Ⅰ)由已知得∠PBC=60°,可得∠PBA=30°,在△PBA中,由余弦定理即可得出.
(II)设∠PBA=α,由已知得∠PCB=α,PB=2sinα,在△PBA中,由正弦定理得$\frac{{2\sqrt{3}}}{sin150°}=\frac{2sinα}{{sin({30°-α})}}$,化简整理即可得出.

解答 解:(Ⅰ)由已知得∠PBC=60°,∴∠PBA=30°,
在△PBA中,由余弦定理得$P{A^2}={({2\sqrt{3}})^2}+1-2×2\sqrt{3}×1×cos30°=7$,
∴$PA=\sqrt{7}$.
(Ⅱ)设∠PBA=α,由已知得∠PCB=α,PB=2sinα,
在△PBA中,由正弦定理得$\frac{{2\sqrt{3}}}{sin150°}=\frac{2sinα}{{sin({30°-α})}}$,化简得$\sqrt{3}cosα$=4sinα,
∴tanα=$\frac{\sqrt{3}}{4}$,∴tan∠PBA=$\frac{\sqrt{3}}{4}$.

点评 本题考查了正弦定理余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网