题目内容

7.数列{an}中,a1=3,an+1=2an+2.
(I)求证:{an+2}是等比数列,并求数列{an}的通项公式;
(II)设bn=$\frac{n}{{a}_{n}+2}$,求Sn=b1+b2+…+bn,并证明:?n∈N*,$\frac{1}{5}$≤Sn<$\frac{4}{5}$.

分析 (Ⅰ)把原数列递推式变形,可得{an+2}是等比数列,求出其通项公式后可求数列{an}的通项公式;
(Ⅱ)把数列{an}的通项公式代入${b_n}=\frac{n}{{{a_n}+2}}$,整理后利用错位相减法求Sn=b1+b2+…+bn,然后放缩得答案.

解答 (Ⅰ)证明:由an+1=2an+2,得an+1+2=2(an+2),
∵a1+2=5≠0,∴$\frac{{a}_{n+1}+2}{{a}_{n}+2}=2$,
∴{an+2}是首项为5,公比为2的等比数列,
则${a}_{n}+2=5•{2}^{n-1}$,
∴${a}_{n}=5•{2}^{n-1}-2$;
(Ⅱ)解:${b_n}=\frac{n}{{5×{2^{n-1}}}}$,
∴${S_n}=\frac{1}{5}({\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}})$------①
$\frac{1}{2}{S_n}=\frac{1}{5}({\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}})$------②
①-②得:${S_n}=\frac{2}{5}({\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{{{2^{n-1}}}}})=\frac{2}{5}({\frac{{1-\frac{1}{2^n}}}{{1-\frac{1}{2}}}-\frac{n}{2^n}})=\frac{2}{5}({2-\frac{n+2}{2^n}})$.
∴${S_n}=\frac{4}{5}-\frac{1}{5}×\frac{n+2}{{{2^{n-1}}}}<\frac{4}{5}$;
∵${S_{n+1}}-{S_n}=\frac{2}{5}({\frac{n+2}{2^n}-\frac{n+3}{{{2^{n+1}}}}})=\frac{2}{5}×\frac{n+1}{{{2^{n+1}}}}>0$,
∴{Sn}单调递增,则${S_n}≥{S_1}=\frac{1}{5}$,
∴$?n∈{N^*},\frac{1}{5}≤{S_n}<\frac{4}{5}$.

点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的和,考查放缩法证明数列不等式,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网