题目内容
12.(x-1)(2x-$\frac{1}{x}$)5的二项展开式中常数项为-40.分析 (2x-$\frac{1}{x}$)5的通项公式:Tr+1=${∁}_{5}^{r}(2x)^{5-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{5}^{r}$25-rx5-2r.分别令5-2r=-1,5-2r=0,解得r即可得出.
解答 解:(2x-$\frac{1}{x}$)5的通项公式:Tr+1=${∁}_{5}^{r}(2x)^{5-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{5}^{r}$25-rx5-2r.
令5-2r=-1,解得r=3.令5-2r=0,解得r=$\frac{5}{2}$,舍去.
∴(x-1)(2x-$\frac{1}{x}$)5的二项展开式中常数项=$1×(-1)^{3}{∁}_{5}^{3}×{2}^{2}$=-40.
故答案为:-40.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.一元二次方程x2=4x的根是( )
| A. | 4 | B. | ±2 | C. | 0或2 | D. | 0或4 |
20.数列2,5,10,17,…的一个通项公式为( )
| A. | 2n | B. | n2+n | C. | 2n-1 | D. | n2+1 |
4.下列选项中,说法正确的是( )
| A. | 若a>b>0,则${log_{\frac{1}{2}}}a>{log_{\frac{1}{2}}}b$ | |
| B. | 向量$\overrightarrow a=(1,m),\overrightarrow b=(m,2m-1)$(m∈R)共线的充要条件是m=0 | |
| C. | 命题“?n∈N*,3n>(n+2)•2n-1”的否定是“?n∈N*,3n≥(n+2)•2n-1” | |
| D. | 已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)•f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题 |