ÌâÄ¿ÄÚÈÝ
17£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF×÷Ö±Ïß$x+y-\sqrt{2}=0$½»MÓÚA£¬BÁ½µã£¬PΪABµÄÖе㣬ÇÒOPµÄбÂÊΪ$\frac{1}{2}$£®£¨1£©ÇóMµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßx-my+1=0½»ÍÖÔ²MÓÚC£¬DÁ½µã£¬Åжϵã$G£¨-\frac{9}{4}£¬0£©$ÓëÒÔÏß¶ÎCDΪֱ¾¶µÄÔ²µÄλÖùØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®x0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬Ïà¼õ¿ÉµÃ£ºa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨m2+2£©y2-2my-3=0£¬ÀûÓøùÓëϵÊýµÄ¹²Ïß¼°ÆäÊýÁ¿»ýÔËËãÐÔÖʼ´¿ÉÅжϳö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£®
Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$£¬${y}_{0}=\frac{{y}_{1}+{y}_{2}}{2}$£¬$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-1£®
½«A¡¢B´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}$=1£¬$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1£¬
Ïà¼õ¿ÉµÃ£º£¨1£©-£¨2£©µÃµ½$-\frac{{b}^{2}}{{a}^{2}}•\frac{{x}_{0}}{{y}_{0}}$=-1£¬
ÓÖOPµÄбÂÊΪ$\frac{1}{2}$=$\frac{{y}_{0}}{{x}_{0}}$£¬
¡àa2=2b2£¬ÓÖc=$\sqrt{2}$£¬a2=b2+c2£¬
½âµÃa=2£¬b2=2£®
µÃµ½±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{2}=1$£®
£¨2£©ÉèµãC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬Ôò$\overrightarrow{GC}$=$£¨{x}_{1}+\frac{9}{4}£¬{y}_{1}£©$£¬$\overrightarrow{GD}$=$£¨{x}_{2}+\frac{9}{4}£¬{y}_{2}£©$£®
ÓÉ$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬»¯Îª£¨m2+2£©y2-2my-3=0£¬
¡ày1+y2=$\frac{2m}{{m}^{2}+2}$£¬y1y2=$\frac{-3}{{m}^{2}+2}$£¬
´Ó¶ø$\overrightarrow{GC}•\overrightarrow{GD}$=$£¨{x}_{1}+\frac{9}{4}£©£¨{x}_{2}+\frac{9}{4}£©$+y1y2=$£¨m{y}_{1}+\frac{5}{4}£©$$£¨m{y}_{2}+\frac{5}{4}£©$+y1y2=£¨m2+1£©y1y2+$\frac{5}{4}m£¨{y}_{1}+{y}_{2}£©$+$\frac{25}{16}$=$\frac{-3£¨{m}^{2}+1£©}{{m}^{2}+2}$+$\frac{5{m}^{2}}{2£¨{m}^{2}+2£©}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16£¨{m}^{2}+2£©}$£¾0£®
ÓÖ$\overrightarrow{GC}$£¬$\overrightarrow{GD}$²»¹²Ïߣ®
¡à¡ÏAGBΪÈñ½Ç£®
¹ÊµãGÔÚÒÔABΪֱ¾¶µÄÔ²Í⣮
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹²Ïß¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢µãÓëÔ²µÄλÖùØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | INPUT¡°MATH=¡±£»a | B£® | PRINT¡°MATH=¡±£»a+b+c | ||
| C£® | y=b-c | D£® | a+b=c |
| A£® | $-\frac{¦Ð}{4}$ | B£® | $-\frac{¦Ð}{2}$ | C£® | $\frac{¦Ð}{8}$ | D£® | $\frac{5¦Ð}{4}$ |
| A£® | £¨1£¬$\frac{1}{{e}^{2}}$+2] | B£® | [$\frac{1}{{e}^{2}}$+2£¬e2-2] | C£® | £¨1£¬e2-2] | D£® | [e2-2£¬+¡Þ£© |
| A£® | $\frac{1}{3}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |