题目内容
13.变量x,y之间的一组相关数据如表所示:| x | 4 | 5 | 6 | 7 |
| y | 8.2 | 7.8 | 6.6 | 5.4 |
| A. | -0.96 | B. | -0.94 | C. | -0.92 | D. | -0.98 |
分析 求出样本的中心点,代入回归方程求出$\stackrel{∧}{b}$的值即可.
解答 解:由题意得:$\overline{x}$=5.5,$\overline{y}$=7,
故样本中心点是(5.5,7),
故7=5.5$\stackrel{∧}{b}$+12.28,解得:$\stackrel{∧}{b}$=-0.96,
故选A
点评 本题考查线性回归方程的性质,本题解题的关键是根据所给的条件求出直线的样本中心点,线性回归方程一定过样本中心点是本题解题的依据,本题是一个基础题.
练习册系列答案
相关题目
4.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个根,则m的取值范围是( )
| A. | (-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞) | B. | [-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞) | C. | (-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2) | D. | [-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2] |
1.在△ABC中,已知角A,B,C的对边分别为a,b,c.若a=2,A=30°,C=45°,则△ABC的面积为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$+1 | C. | $\frac{1}{2}$($\sqrt{3}$+1) | D. | 2$\sqrt{2}$ |
8.一个无穷数列的前三项是1,2,3,下列不可以作为其通项公式的是( )
| A. | an=n | B. | an=n3-6n2+12n-6 | C. | an=$\frac{1}{2}$n2-$\frac{1}{2}$n+1 | D. | an=$\frac{6}{{n}^{2}-6n+11}$ |
2.已知a,b,c是互不相等的非零实数,若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+c=0至少有一个方程有两个相异实根,反证假设应为( )
| A. | 三个方程中至多有一个方程有两个相异实根 | |
| B. | 三个方程都有两个相异实根 | |
| C. | 三个方程都没有两个相异实根 | |
| D. | 三个方程都没有实根 |
3.已知角α的终边过点P(-5,12),则sinα+cosα=( )
| A. | $\frac{4}{13}$ | B. | $-\frac{4}{13}$ | C. | $\frac{7}{13}$ | D. | $-\frac{7}{13}$ |