题目内容

5.在△ABC中,|$\overrightarrow{AB}$|=2.|$\overrightarrow{AC}$|=1,点D是BC的中点.

(1)求证:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)直线l过点D且垂直于BC,E为l上任意一点,求证:$\overrightarrow{AE}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)为常数,并求出该常数;
(3)如图2,若cosA=$\frac{3}{4}$,F为线段AD上的任意一点,求$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)的范围.

分析 (1)延长AD到A1使得AD=DA1,连接CA1,A1B,证明四边形ACA1B是平行四边形,即可证明:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)运用向量加法三角形法则,以及向量垂直的性质:数量积为0,斜率的平方即为模的平方,即可得到所求常数;
(3)设|$\overrightarrow{AF}$|=x,则|$\overrightarrow{FD}$|=$\sqrt{2}$-x(0≤x≤$\sqrt{2}$),运用向量共线和向量数量积的定义,可得$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)=2x($\sqrt{2}$-x),利用基本不等式,可得所求的范围.

解答 (1)证明:延长AD到A1使得AD=DA1,连接CA1,A1B,
∵D是BC的中点,
∴四边形ACA1B是平行四边形,
∴$\overrightarrow{A{A}_{1}}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,
∵$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{A{A}_{1}}$,
则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)证明:∵$\overrightarrow{AE}$=$\overrightarrow{AD}$+$\overrightarrow{DE}$,
∴$\overrightarrow{AE}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=($\overrightarrow{AD}$+$\overrightarrow{DE}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\overrightarrow{AD}$•$\overrightarrow{CB}$+$\overrightarrow{DE}$•$\overrightarrow{CB}$,
∵DE⊥BC,∴$\overrightarrow{DE}$•$\overrightarrow{CB}$=0,
∵$\overrightarrow{AD}$•$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{1}{2}$($\overrightarrow{AB}$2-$\overrightarrow{AC}$2)=$\frac{1}{2}$×(4-1)=$\frac{3}{2}$,
∴$\overrightarrow{AE}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{3}{2}$;
(3)解:△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,cosA=$\frac{3}{4}$,$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),

∴|$\overrightarrow{AD}$|=$\frac{1}{2}$$\sqrt{{\overrightarrow{AB}}^{2}+{\overrightarrow{AC}}^{2}+2\overrightarrow{AB}•\overrightarrow{AC}}$=$\frac{1}{2}$$\sqrt{4+2×2×1×\frac{3}{4}+1}$=$\sqrt{2}$,
同理$\overrightarrow{FB}$+$\overrightarrow{FC}$=2$\overrightarrow{FD}$,
∴$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)=$\overrightarrow{AF}$•2$\overrightarrow{FD}$=2|$\overrightarrow{AF}$|•|$\overrightarrow{FD}$|,
设|$\overrightarrow{AF}$|=x,则|$\overrightarrow{FD}$|=$\sqrt{2}$-x(0≤x≤$\sqrt{2}$),
∴$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)=2x($\sqrt{2}$-x)≤2($\frac{x+\sqrt{2}-x}{2}$)2=1,
当且仅当x=$\frac{\sqrt{2}}{2}$时取等号,
∴$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)∈(0,1].

点评 本题考查平面向量知识的运用,考查向量数量积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网