题目内容
2.已知a,b,c是互不相等的非零实数,若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+c=0至少有一个方程有两个相异实根,反证假设应为( )| A. | 三个方程中至多有一个方程有两个相异实根 | |
| B. | 三个方程都有两个相异实根 | |
| C. | 三个方程都没有两个相异实根 | |
| D. | 三个方程都没有实根 |
分析 用反证法证明某个命题成立时,应假设命题的反面成立,即假设命题的否定成立,写出题中命题的否定.
解答 解:用反证法证明某个命题成立时,应假设命题的反面成立,即假设命题的否定成立.
命题“三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根”的否定为:
“三个方程都没有两个相异实根”,
故选:C.
点评 本题考查反证法的定义,求一个命题的否定,求一个命题的否定是解题的关键.
练习册系列答案
相关题目
13.变量x,y之间的一组相关数据如表所示:
若x,y之间的线性回归方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+12.28,则$\stackrel{∧}{b}$的值为( )
| x | 4 | 5 | 6 | 7 |
| y | 8.2 | 7.8 | 6.6 | 5.4 |
| A. | -0.96 | B. | -0.94 | C. | -0.92 | D. | -0.98 |
10.已知函数f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是单调递增的,则a的取值范围是( )
| A. | [-2,-1] | B. | (-∞,-1] | C. | [1,2] | D. | [1,+∞) |
14.某高校调查询问了56名男女大学生在课余时间是否参加运动,得到下表所示的数据.从表中数据分析,有多大把握认为大学生的性别与参加运动之间有关系.
| 参加运动 | 不参加运动 | 合计 | |
| 男大学生 | 20 | 8 | 28 |
| 女大学生 | 12 | 16 | 28 |
| 合计 | 32 | 24 | 56 |