题目内容

2.已知a,b,c是互不相等的非零实数,若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+c=0至少有一个方程有两个相异实根,反证假设应为(  )
A.三个方程中至多有一个方程有两个相异实根
B.三个方程都有两个相异实根
C.三个方程都没有两个相异实根
D.三个方程都没有实根

分析 用反证法证明某个命题成立时,应假设命题的反面成立,即假设命题的否定成立,写出题中命题的否定.

解答 解:用反证法证明某个命题成立时,应假设命题的反面成立,即假设命题的否定成立.
命题“三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根”的否定为:
“三个方程都没有两个相异实根”,
故选:C.

点评 本题考查反证法的定义,求一个命题的否定,求一个命题的否定是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网