题目内容

9.在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线AB过点P,且交圆C于A,B两点,若△ABC面积的最大值为20,则实数m的取值范围是(  )
A.-3<m≤-1或7≤m<9B.-3≤m≤-1或7≤m≤9C.-3<m<-1或7<m<9D.-3<m<-1或7≤m<9

分析 根据圆的标准方程得到圆心坐标和半径,利用三角形面积的最大值,确定直线的位置,利用直线和方程的位置关系即可得到结论.

解答 解:圆C:(x-m)2+(y-2)2=40,圆心C(m,2),半径r=2$\sqrt{10}$,
S△ABC=$\frac{1}{2}$r2sin∠ACB=20sin∠ACB,
∴当∠ACB=90时S取最大值20,
此时△ABC为等腰直角三角形,AB=$\sqrt{2}$r=4$\sqrt{5}$,
则C到AB距离=2$\sqrt{5}$,∴2$\sqrt{5}$≤PC<2$\sqrt{10}$,
即2$\sqrt{5}$≤$\sqrt{(3-m)^{2}+{2}^{2}}$$<2\sqrt{10}$,
∴20≤(m-3)2+4<40,即16≤(m-3)2<36,
∴-3<m≤-1或7≤m<9,
故选:A

点评 本题主要考查直线和圆的位置关系的应用,利用圆的标准方程求出圆心坐标和半径是解决本题的关键.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网