题目内容
9.在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线AB过点P,且交圆C于A,B两点,若△ABC面积的最大值为20,则实数m的取值范围是( )| A. | -3<m≤-1或7≤m<9 | B. | -3≤m≤-1或7≤m≤9 | C. | -3<m<-1或7<m<9 | D. | -3<m<-1或7≤m<9 |
分析 根据圆的标准方程得到圆心坐标和半径,利用三角形面积的最大值,确定直线的位置,利用直线和方程的位置关系即可得到结论.
解答
解:圆C:(x-m)2+(y-2)2=40,圆心C(m,2),半径r=2$\sqrt{10}$,
S△ABC=$\frac{1}{2}$r2sin∠ACB=20sin∠ACB,
∴当∠ACB=90时S取最大值20,
此时△ABC为等腰直角三角形,AB=$\sqrt{2}$r=4$\sqrt{5}$,
则C到AB距离=2$\sqrt{5}$,∴2$\sqrt{5}$≤PC<2$\sqrt{10}$,
即2$\sqrt{5}$≤$\sqrt{(3-m)^{2}+{2}^{2}}$$<2\sqrt{10}$,
∴20≤(m-3)2+4<40,即16≤(m-3)2<36,
∴-3<m≤-1或7≤m<9,
故选:A
点评 本题主要考查直线和圆的位置关系的应用,利用圆的标准方程求出圆心坐标和半径是解决本题的关键.属于中档题.
练习册系列答案
相关题目
18.若角α的终边经过点(1,-5),则tanα等于( )
| A. | -5 | B. | 5 | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
19.已知f(x)是R上的奇函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),0≤x<1}\\{|x-3|,x≥1}\end{array}\right.$,则函数y=f(x)-$\frac{1}{2}$的所有零点之和是( )
| A. | 5+$\sqrt{2}$ | B. | 1-$\sqrt{2}$ | C. | $\sqrt{2}$-1 | D. | 5-$\sqrt{2}$ |