题目内容

设函数f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期及单调递增区间;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
3
,求b值.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(1)首先利用三角恒等变换把函数变形成正弦型函数,进一步求出最小正周期和单调区间
(2)利用正弦定理解三角形,要进行分类讨论.
解答: 解:(1)f(x)=sin(x+
π
6
)+2sin2
x
2
=
3
2
sinx+
1
2
cosx+1-cosx
=
3
2
sinx-
1
2
cosx+1=sin(x-
π
6
)+1

∴T=2π.
-
π
2
+2kπ≤x-
π
6
π
2
+2kπ(k∈Z)

-
π
3
+2kπ≤x≤
3
+2kπ(k∈Z)

所以f(x)的单调递增区间是[-
π
3
+2kπ,
3
+2kπ](k∈Z)

(2)由f(A)=1,得sin(A-
π
6
)=0,故A=
π
6

由正弦定理
a
sinA
=
c
sinC
,得sinC=
3
2
,C=
π
3
3

①当C=
π
3
,B=
π
2
,从而b=
b2+c2
=2

②当C=
3
时,B=
π
6
,又A=
π
6
,从而a=b=1

故b的值为1或2.
点评:本题考查的知识要点:三角函数的恒等变换,正弦型函数的最小正周期及单调区间的应用,解三角形是正弦定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网