题目内容

13.已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|-2≤x≤1}.
(1)求a的值;
(2)若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,求k的取值范围.

分析 (1)求出-2≤ax≤1,而不等式f(x)≤3的解集{x|-2≤x≤1},根据对应关系求出a的值即可;
(2)问题转化为|2x+2|-|2x+1|≤|2x+2-2x-1|=1≤k,从而求出k的范围即可.

解答 解:(1)由|2ax+1|≤3,
得-3≤2ax+1≤3,
故-4≤2ax≤2,
故-2≤ax≤1,
而不等式f(x)≤3的解集{x|-2≤x≤1},
故a=1;
(2)由(1)得:f(x)=|2x+1|,
f(x)-2f($\frac{x}{2}$)=|2x+1|-2|x+1|=|2x+1|-|2x+2|,
若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,
即|2x+2|-|2x+1|≤|2x+2-2x-1|=1≤k,
故k≥1.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质以及转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网