题目内容

6.点D是△ABC中AB边的中点,CA=CB,E是CD的中点,AE的延长线交BC于F,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\overrightarrow{b}$B.$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$

分析 可画出图形,由条件及图形便可得出$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$,$\overrightarrow{AF}$与$\overrightarrow{AE}$共线,从而得到$\overrightarrow{AF}=\frac{k}{2}\overrightarrow{a}+\frac{k}{2}\overrightarrow{b}$,而由B,F,C三点共线便可以得出$\overrightarrow{AF}=λ\overrightarrow{AB}+(1-λ)\overrightarrow{AC}=\frac{1+λ}{2}\overrightarrow{a}+(1-λ)\overrightarrow{b}$,从而根据平面向量基本定理便可得出$\frac{1+λ}{2}=1-λ$,这样即可解出λ,从而可用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{AF}$.

解答 解:如图,根据条件:
$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}$=$\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}=\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$;
∴$\overrightarrow{AF}=k\overrightarrow{AE}=\frac{k}{2}\overrightarrow{a}+\frac{k}{2}\overrightarrow{b}$;
B,F,C三点共线,∴$\overrightarrow{AF}=λ\overrightarrow{AB}+(1-λ)\overrightarrow{AC}$=$λ\overrightarrow{AB}+(1-λ)(\frac{1}{2}\overrightarrow{AB}+\overrightarrow{DC})$=$\frac{1+λ}{2}\overrightarrow{AB}+(1-λ)\overrightarrow{DC}=\frac{1+λ}{2}\overrightarrow{a}+(1-λ)\overrightarrow{b}$;
∴$\frac{1+λ}{2}=1-λ$;
解得$λ=\frac{1}{3}$;
∴$\overrightarrow{AF}=\frac{2}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}$.
故选:C.

点评 考查向量加法和数乘的几何意义,以及向量的数乘运算,共线向量基本定理,平面向量基本定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网