题目内容
设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是( )
| A、f(1.5)<f(3.5)<f(6.5) |
| B、f(6.5)<f(3.5)<f(1.5) |
| C、f(3.5)<f(1.5)<f(6.5) |
| D、f(3.5)<f(6.5)<f(1.5) |
考点:函数的周期性
专题:函数的性质及应用
分析:由条件可知函数f(x)的周期为6,利用函数周期性,对称性和单调性之间的关系即可得到结论.
解答:
解:∵f(x)=f(x+6),
∴f(x)在R上以6为周期,
∵函数的对称轴为x=3,
∴f(3.5)=f(2.5),f(6.5)=f(0.5)
∵f(x)在(0,3)内单调递减,0.5<1.5<2.5
∴f(2.5)<f(1.5)<f(0.5)
即f(3.5)<f(1.5)<f(6.5)
故选:C
∴f(x)在R上以6为周期,
∵函数的对称轴为x=3,
∴f(3.5)=f(2.5),f(6.5)=f(0.5)
∵f(x)在(0,3)内单调递减,0.5<1.5<2.5
∴f(2.5)<f(1.5)<f(0.5)
即f(3.5)<f(1.5)<f(6.5)
故选:C
点评:本题主要考查了函数的周期性与单调性的综合运用,利用周期性把所要比较的变量转化到同一单调区间,利用函数的单调性比较函数值的大小,是解决此类问题的常用方法.
练习册系列答案
相关题目
自点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,则切线的方程为( )
| A、3x+4y-29=0 |
| B、3x-4y+11=0 |
| C、x=3或3x-4y+11=0 |
| D、y=3或3x-4y+11=0 |
从6个不同的小球中选4个分别投入编号为1、2、3、4的四个不同盒子中,要求每个盒子中放一个小球,并且甲球不放入1号盒子中,乙球不放入2号盒子中,且丙、丁两球要么全部放入盒子中,要么全不放入盒子中,不同选法的种数为( )
| A、100 | B、110 |
| C、124 | D、84 |
设函数f(x)在区间(-3,4)内为增函数,则( )
| A、f(-1)>f(1) |
| B、f(-1)=f(1) |
| C、f(-1)<f(1) |
| D、以上都有可能 |