题目内容
16.已知$sin({α+\frac{π}{3}})=-\frac{1}{2}$,$α∈({\frac{2π}{3},π})$,则sinα=$\frac{1}{2}$.分析 结合角的范围,由已知利用同角三角函数基本关系式可求cos($α+\frac{π}{3}$)的值,进而利用两角差的正弦函数公式即可计算得解.
解答 解:∵$sin({α+\frac{π}{3}})=-\frac{1}{2}$,$α∈({\frac{2π}{3},π})$,
∴$α+\frac{π}{3}$∈(π,$\frac{4π}{3}$),可得:cos($α+\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,
∴sinα=sin[($α+\frac{π}{3}$)-$\frac{π}{3}$]=sin($α+\frac{π}{3}$)cos$\frac{π}{3}$-cos($α+\frac{π}{3}$)sin$\frac{π}{3}$=(-$\frac{1}{2}$)×$\frac{1}{2}$-(-$\frac{\sqrt{3}}{2}$)×$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
5.某公司发布的2015年度财务报告显示,该公司在去年第一季度、第二季度的营业额每季度均比上季度下跌10%,第三季度、第四季度的营业额每季度均比上季度上涨10%,则该公司在去年整年的营业额变化情况是( )
| A. | 下跌1.99% | B. | 上涨1.99% | C. | 不涨也不跌 | D. | 不确定 |
6.设a=30.4,b=log40.3,c=log43,则( )
| A. | a>c>b | B. | b>c>a | C. | c>a>b | D. | c>b>a |