题目内容

已知集合A={x|lgx<1},B={y|y=
3-2x-x2
},则A∩B=
 
考点:交集及其运算
专题:集合
分析:利用对数的性质求出A中x的范围确定出A,利用二次函数的性质求出B中y的范围确定出B,找出两集合的交集即可.
解答: 解:由A中的不等式变形得:lgx<1=lg10,得到0<x<10,即A=(0,10);
由B中y=
3-2x-x2
=
-(x+1)2+4
4
=2,且y≥0,得到B=[0,2],
则A∩B=(0,2].
故答案为:(0,2]
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网