题目内容

如图所示,已知空间四边形OABC中,OB=|OC|,且∠AOB=∠AOC,则
OA
CB
夹角β的余弦值为(  )
A、0
B、
1
2
C、
3
2
D、
2
2
考点:异面直线及其所成的角
专题:平面向量及应用
分析:利用OB=OC,以及两个向量的数量积的定义化简cosβ的值,
解答: 解:∵OB=OC,
∴cosβ=
OA
CB
|
OA
||
CB
|
=
OA
•(
OB
-
OC
)
|
OA
||
CB
|
=
OA
OB
-
OA
OC
|
OA
||
CB
|

=
|OA
||
OB
|cos∠AOB-|
OA
||
OC
|cos∠AOC
|
OA
||
CB
|
=0;
故选A.
点评:本题考查两个向量的数量积的定义,两个向量的夹角公式的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网