题目内容

11.已知函数$f(x)=\left\{\begin{array}{l}x+4,-3≤x≤0\\{x^2}-2x,0<x<4\\-x+2,4≤x≤5\end{array}\right.$,则f[f(f(2))]=(  )
A.2B.-2C.4D.0

分析 利用分段函数由里及外逐步求解即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}x+4,-3≤x≤0\\{x^2}-2x,0<x<4\\-x+2,4≤x≤5\end{array}\right.$,
则f[f(f(2))]=f[f(4-4)]=f[f(0)]=f(0+4)=f(4)=-4+2=-2..
故选:B.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网