题目内容

如图,在三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB=3
2
,AD=BD=3,BC=5.
(1)求证:VC⊥AB;
(2)当二面角∠VDC=60°时,求三棱锥V-ABC的体积.
考点:直线与平面垂直的性质,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)结合线面垂直的判定定理,从而证明线线垂直;(2)只需求出VO,CD的长,从而求出四面体的体积.
解答: (1)证明:连接VD,∵AD=BD=3,∴D是AB中点,
∵VA=VB=3
2
,∴VD⊥AB,
∵VO⊥平面ABC,∴AB⊥VO,
又VD∩VO=V,
∴VC⊥AB;
(2)在RT△VAD中,VA=3
2
,AD=3,∴VD=3,
在RT△VDO中,∠VDC=60°,VD=3,∴VO=
3
2
3

在RT△BCD中,BD=3,BC=5,∴CD=4,
∴VV-ABC=
1
3
×
1
2
×6×4×
3
2
3
=6
3
点评:本题考查了线面垂直的判定定理,考查了椎体的体积,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网