题目内容

13.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N是线段OA上的动点,则$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值为(  )
A.0B.1C.$\frac{3}{2}$D.1-$\frac{\sqrt{5}}{2}$

分析 建立坐标系,设P(cosα,sinα),N(t,0),用α,t表示出$\overrightarrow{PM}$$•\overrightarrow{PN}$,利用三角函数的性质和α,t的范围求出最小值.

解答 解;分别以OA,OB为x轴,y轴建立平面直角坐标系,设P(cosα,sinα),N(t,0),则0≤t≤1,0≤α≤$\frac{π}{2}$,M(0,$\frac{1}{2}$),
∴$\overrightarrow{PM}$=(-cosα,$\frac{1}{2}$-sinα),$\overrightarrow{PN}$=(t-cosα,-sinα).
∴$\overrightarrow{PM}•\overrightarrow{PN}$=-(t-cosα)cosα-sinα($\frac{1}{2}$-sinα)=cos2α+sin2α-tcosα-$\frac{1}{2}$sinα=1-$\sqrt{{t}^{2}+\frac{1}{4}}$sin(α+φ).
其中tanφ=2t,∵0≤α≤$\frac{π}{2}$,0≤t≤1,
∴当α+φ=$\frac{π}{2}$,t=1时,$\overrightarrow{PM}$$•\overrightarrow{PN}$取得最小值1-$\sqrt{\frac{5}{4}}$=1-$\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网