题目内容

已知sin(
π
2
+θ)=
3
5
,θ∈(
2
,2π),则sin2θ
 
考点:二倍角的正弦
专题:计算题,三角函数的求值
分析:由诱导公式先求得cosθ的值,即可求sinθ的值,从而可由二倍角公式求sin2θ的值.
解答: 解:∵sin(
π
2
+θ)=cosθ=
3
5

又∵θ∈(
2
,2π),
∴sinθ=-
1-cos2θ
=-
4
5

∴sin2θ=2sinθcosθ=2×
3
5
×(-
4
5
)
=-
24
25

故答案为:-
24
25
点评:本题主要考察了诱导公式、同角三角函数关系式、二倍角公式的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网