题目内容

8.已知四棱锥P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中点M是顶点P的底面ABCD的射影,N是PC的中点.
(Ⅰ)求证:平面MPB⊥平面PBC;
(Ⅱ)若MP=MC,求直线BN与平面PMC所成角的正弦值.

分析 (Ⅰ)证明BC⊥平面PMB,即可证明:平面MPB⊥平面PBC;
(Ⅱ)过B作BH⊥MC,连接HN,证明∠BNH为直线BN与平面PMC所成的角,即可求直线BN与平面PMC所成角的正弦值.

解答 (Ⅰ)证明:在菱形ABCD中,设AB=2a,M是AD的中点,
MB2=AM2+AB2-2AM•AB•cos60°=3a2,MC2=DM2+DC2-2DM•DC•cos120°=7a2
又∵BC2=4a2,∴MB2+BC2=MC2,∴MB⊥BC,
又∵P在底面ABCD的射影M是AD的中点,∴PM⊥平面ABCD,
又∵BC?平面ABCD,∴PM⊥BC,
而PM∩MB=M,PM,MB?平面PMB,∴BC⊥平面PMB,
又BC?平面PBC,∴平面MPB⊥平面PBC.
(Ⅱ)解:过B作BH⊥MC,连接HN,
∵PM⊥平面ABCD,BC?平面ABCD,∴BH⊥PM,
又∵PM,MC?平面PMC,PM∩MC=M,∴BH⊥平面PMC,
∴HN为直线BN在平面PMC上的射影,
故∠BNH为直线BN与平面PMC所成的角,
在△MBC中,$BH=\frac{{2a•\sqrt{3}a}}{{\sqrt{7}a}}=\frac{{2\sqrt{21}}}{7}a$
由(Ⅰ)知BC⊥平面PMB,PB?平面PMB,∴PB⊥BC.
$BN=\frac{1}{2}PC=\frac{{\sqrt{14}}}{2}a$,
∴$sin∠BNH=\frac{BH}{BN}=\frac{{\frac{{2\sqrt{21}}}{7}a}}{{\frac{{\sqrt{14}}}{2}a}}=\frac{{2\sqrt{6}}}{7}$.

点评 本题考查线面垂直、面面垂直的证明,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网