题目内容
计算:
+
+
+…+
= .
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
考点:数列的求和
专题:等差数列与等比数列
分析:由于
=
(
-
),利用“裂项求和”即可得出.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:∵
=
(
-
),
∴
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
=
-
.
故答案为:
-
.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2n2+6n+4 |
故答案为:
| 3 |
| 4 |
| 2n+3 |
| 2n2+6n+4 |
点评:本题考查了“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
| x2 |
| a2 |
| y2 |
| b2 |
| π |
| 12 |
| π |
| 6 |
A、[
| ||||
B、[
| ||||
C、[
| ||||
D、[
|
某几何体的三视图如图所示,则该几何体的体积为( )

| A、12+π | B、8+π |
| C、12-π | D、6-π |