题目内容
三棱锥的三个侧面都是直角三角形,且三个直角的顶点恰是三棱锥的顶点,则其底面一定是( )
| A、直角三角形 |
| B、钝角三角形 |
| C、锐角三角形 |
| D、等边三角形 |
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:借助于三角形的余弦定理判定底面三角形的形状.
解答:
解:设三条侧棱的长度分别为a,b,c,
∵三棱锥的三个侧面都是直角三角形,且三个直角的顶点恰是三棱锥的顶点,
∴底面的三条边的平方分别为a2+b2,a2+c2,b2+c2,
∴a2+b2+a2+c2-(b2+c2)=2a2>0,a2+b2+b2+c2-a2-c2=2b2>0,b2+c2+a2+c2-b2-a2=2c2>0,
根据余弦定理可知,底面的三个内角都是锐角,所以底面一定是锐角三角形;
故选C.
∵三棱锥的三个侧面都是直角三角形,且三个直角的顶点恰是三棱锥的顶点,
∴底面的三条边的平方分别为a2+b2,a2+c2,b2+c2,
∴a2+b2+a2+c2-(b2+c2)=2a2>0,a2+b2+b2+c2-a2-c2=2b2>0,b2+c2+a2+c2-b2-a2=2c2>0,
根据余弦定理可知,底面的三个内角都是锐角,所以底面一定是锐角三角形;
故选C.
点评:本题考查了三棱锥的性质以及利用余弦定理判定三角形的形状.
练习册系列答案
相关题目
若复数z满足zi=1+i,则z等于( )
| A、1-i | B、-1-i |
| C、-1+i | D、1+i |
已知sinθ=
,cosθ=
,若θ为第二象限角,则下列结论正确的是( )
| 1-a |
| 1+a |
| 3a-1 |
| 1+a |
A、a∈(-1,
| ||
| B、a=1 | ||
C、a=1或a=
| ||
D、a=
|
若函数h(x)=2x-k(
+1)在(1,+∞)上是增函数,则实数k的取值范围是( )
| 1 |
| x |
| A、[-2,+∞) |
| B、[2,+∞) |
| C、(-∞,-2] |
| D、(-∞,2] |
二次函数y=x2(x>0)的图象在点(an,an2)处的切线与x轴交点的横坐标为an+1,n为正整数,a1=
,则S5=( )
| 1 |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
| DF |
| AB |
| AC |
A、α=
| ||
B、α=-
| ||
C、α=1,β=-
| ||
D、α=-1,β=
|
5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为( )
| A、18 | B、24 | C、36 | D、48 |
如图所示,fi(x)(i=1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,任意λ∈[0.1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2)恒成立”的只有( )

| A、f1(x),f3(x) |
| B、f2(x) |
| C、f2(x),f3(x) |
| D、f4(x) |