题目内容
8.已知命题p:x2-ax+1=0有两个实根,q:函数y=x2+ax+b在[1,+∞)上为增函数,若命题“p∧q”为真命题,求实数a的取值范围.分析 命题p:x2-ax+1=0有两个实根,可得△≥0,解得a范围.q:函数y=x2+ax+b在[1,+∞)上为增函数,可得-$\frac{a}{2}$≤1,解得a范围.由于命题“p∧q”为真命题,可得p与q都为真命题.即可得出.
解答 解:命题p:x2-ax+1=0有两个实根,∴△=a2-4≥0,解得a≥2或a≤-2.
q:函数y=x2+ax+b在[1,+∞)上为增函数,∴-$\frac{a}{2}$≤1,解得a≥-2.
∵命题“p∧q”为真命题,∴p与q都为真命题.
∴$\left\{\begin{array}{l}{a≥2或a≤-2}\\{a≥-2}\end{array}\right.$,
解得a≥2或a=-2.
∴实数a的取值范围为a≥2或a=-2.
点评 本题考查了一元二次方程的实数根与判别式的关系、二次函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.在焦点在x轴椭圆中截得的最大矩形的面积范围是[3b2,4b2],则椭圆离心率的范围是( )
| A. | $[{\frac{{\sqrt{5}}}{3},\frac{{\sqrt{3}}}{2}}]$ | B. | $[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}}]$ | C. | $[{\frac{1}{2},\frac{{\sqrt{3}}}{2}}]$ | D. | $[{\frac{{\sqrt{2}}}{4},\frac{{\sqrt{3}}}{3}}]$ |
19.下面4个实数中,最小的数是( )
| A. | sin1 | B. | sin2 | C. | sin3 | D. | sin4 |
16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
(参考公式:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 2 | ||
| 不肥胖 | 18 | ||
| 合计 | 30 |
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
参考数据:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |