ÌâÄ¿ÄÚÈÝ

ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªM£¨0£¬
3
£©£¬N£¨0£¬-
3
£©£¬Æ½ÃæÉÏÒ»¶¯µãPÂú×ã|PM|+|PN|=4£¬¼ÇµãPµÄ¹ì¼£ÎªP£®
£¨1£©Çó¹ì¼£PµÄ·½³Ì£»
£¨2£©Éè¹ýµãE£¨0£¬1£©ÇÒ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±Ïßl1£ºy=kx+b1Óë¹ì¼£PÏཻÓÚA£¬BÁ½µã£¬ÈôyÖáÉÏ´æÔÚÒ»µãQ£¬Ê¹µÃÖ±ÏßQA£¬QB¹ØÓÚyÖá¶Ô³Æ£¬Çó³öµãQµÄ×ø±ê£»
£¨3£©ÊÇ·ñ´æÔÚ²»¹ýµãE£¨0£¬1£©£¬ÇÒ²»´¹Ö±×ø±êÖáµÄÖ±Ïßl£¬ËüÓë¹ì¼£P¼°Ô²E£ºx2+£¨y-1£©2=9´Ó×óµ½ÓÒÒÀ´Î½»ÓÚC£¬D£¬F£¬GËĵ㣬ÇÒÂú×ã
.
ED
-
.
EC
=
.
EG
-
.
EF
£¿Èô´æÔÚ£¬Çó³öµ±¡÷OCGµÄÃæ»ýSÈ¡µÃ×îСֵʱk2µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³öµãPµÄ¹ì¼£ÊÇÒÔM£¬NΪ½¹µã£¬³¤Ö᳤Ϊ4£¬½¹¾àΪ2
3
µÄÍÖÔ²£¬ÓÉ´ËÄÜÇó³ö¹ì¼£PµÄ·½³Ì£®
£¨2£©ÉèµãQ£¨0£¬t£©£¬Ö±Ïßl1£ºy=kx+1£¬ÓÉ
y2
4
+x2=1
y=k1x+1
£¬µÃ£¨k 12+4£©x2+2k1x-3=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±Ïß·½³Ì¡¢Ð±Âʹ«Ê½ÄÜÇó³öµãQµÄ×ø±ê£®
£¨3£©¼ÙÉè´æÔÚ·ûºÏÌâÒâµÄÖ±Ïßl£¬ÉèÆä·½³ÌΪy=kx+b£¬ÇÒk¡Ù0£¬ÉèÏß¶ÎDFµÄÖеãΪH£¬ÓÉ
y=kx+b
y2+4x2=4
£¬µÃ£¨k2+4£©x2+2kbx+b2-4=0£¬ÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿¡¢¹¹Ôì·¨´¹¾¶¶¨ÀíµÈ֪ʶռÄÜÇó³ö¡÷OCGµÄÃæ»ýSÈ¡µÃ×îСֵʱk2µÄÖµ£®
½â´ð£º ½â£º£¨1£©¡ß|PM|+|PN|=4£¾2
3
£¬
¡àµãPµÄ¹ì¼£ÊÇÒÔM£¬NΪ½¹µã£¬
³¤Ö᳤Ϊ4£¬½¹¾àΪ2
3
µÄÍÖÔ²£¬
¼´a=2£¬c=
3
£¬¡àb2=a2-c2=1£¬
¡à¹ì¼£PµÄ·½³ÌΪ
y2
4
+x2=1
£®
£¨2£©ÉèµãQ£¨0£¬t£©£¬
¡ß¹ýµãE£¨0£¬1£©ÇÒ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±Ïßl1£ºy=kx+b1Óë¹ì¼£PÏཻÓÚA£¬BÁ½µã£¬
¡àb1=1£¬¡àÖ±Ïßl1£ºy=k1x+1£¬
ÓÉ
y2
4
+x2=1
y=k1x+1
£¬ÏûÈ¥y£¬µÃ£¨k 12+4£©x2+2k1x-3=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨
x
 
2
£¬y2£©£¬
Ôò
¡÷=4k12+12(k12+4)£¾0
x1+x2=
-2k1
k12+4
x1x2=
-3
k12+4
£¬
¡àA£¨x1£¬k1x1+1£©£¬B£¨x2£¬k1x2+1£©£¬
¡àkAQ=
k1x1+1-t
x1
£¬kBQ=
k1x2+1-t
x2
£¬
¡ßÖ±ÏßQA£¬QB¹ØÓÚyÖá¶Ô³Æ£¬¡àkAQ+kBQ=
k1x1+1-t
x1
+
k1x2+1-t
x2
=0£¬
¡à2k1x1x2+£¨1-t£©£¨x1+x2£©=0£¬
¡à2k1£¨-3£©+£¨1-t£©£¨-2k1£©=2k1t-8k1=2£¨t-4£©k1=0£¬
½âµÃt=4£¬¡àQµã×ø±ê£¨0£¬4£©£®
£¨3£©¼ÙÉè´æÔÚ·ûºÏÌâÒâµÄÖ±Ïßl£¬ÉèÆä·½³ÌΪy=kx+b£¬ÇÒk¡Ù0£¬
ÉèÏß¶ÎDFµÄÖеãΪH£¬
¡ß
ED
-
EC
=
EG
-
EF
£¬
¡à
ED
+
EF
=
EC
+
EG
=2
EH
£¬
ÓÉ
y=kx+b
y2+4x2=4
£¬ÏûÈ¥y£¬µÃ£¨k2+4£©x2+2kbx+b2-4=0£¬
ÉèD£¨x3£¬y3£©£¬F£¨x4£¬y4£©£¬
Ôò
¡÷=16(k2-b2+4)£¾0
x3+x4=
-2kb
k2+4
x3x4=
b2-4
k2+4
£¬
¡àH£¨
-kb
k2+4
£¬
4b
k2+4
£©£¬
ÓÉkEH=
4b
k2+4
-1
-kb
k2+4
-0
=-
1
k
£¬½âµÃk2+4=3b£¬¡àH£¨
-k
3
£¬
4
3
£©£¬
´úÈëÅбðʽ£¬µÃ0£¼k2£¼5£¬
¡à´æÔÚÕâÑùµÄÖ±Ïßl·ûºÏÌâÒ⣬
|EH|=
(
-k
3
-0)2+(
4
3
-1)2
=
1
9
+
k2
9
£¬
ÓÉ´¹¾¶¶¨Àí£¬µÃ|CG|=2
9-|EH|2
=
2
3
80-k2
£¬
×ø±êÔ­µãOµ½Ö±ÏßlµÄ¾àÀëd=
|b|
k2+1
=
k2+4
3
k2+1
£¬
¡àS=
1
2
|CG|•d=
1
2
¡Á
2
3
80-k2
¡Á
k2+4
3
k2+1

=
1
9
(k2+4)
80-k2
k2+1
£¬
¡àS2=
1
81
(k2+4)2
80-k2
k2+1
£¬
Áîk2+1=r£¬r¡Ê£¨1£¬6£©£¬
¹¹Ô캯ÊýF(r)=
1
81
(r+3)2
(81-r)
r
£¬r¡Ê£¨1£¬6£©£¬
F¡ä(r)=
1
81
(r+3)
(-2r2+81r-243)
r2
£¬r¡Ê£¨1£¬6£©£¬
ÁîG£¨r£©=-2r2+81r-243£¬r¡Ê£¨1£¬6£©£¬
G£¨r£©=-2r+81r-243=0£¬
¡àr1=
81-9
57
4
£¬»òr2=
81+9
57
4
£¨Éᣩ
ÓÖ¡ß7£¼
57
£¼8£¬¡à
9
4
£¼r1=
81-9
57
4
£¼
9
2
£¬
ÓÖµ±r¡Ê£¨r1£¬6£©Ê±£¬G£¨r£©£¾0£¬
¡àF¡ä£¨r£©£¾0£¬¡àF£¨r£©ÔÚ£¨r1 £¬6£©Éϵ¥µ÷µÝÔö£¬
¡àµ±k2+1=
81-9
57
4
£¬¼´k2=
77-9
57
4
ʱ£¬
¡÷OCGµÄÃæ»ýSÈ¡µÃ×îСֵ£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ×ø±êµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýÈ¡×îСֵʱ²ÎÊýÖµµÄÇ󷨣¬×ÛºÏÐÔÖÊÇ¿£¬ÄѶȴ󣬽âÌâʱҪÈÏÕæÉóÌ⣬±ÜÃâ³öÏÖÔËËãÉϵĴíÎó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø