题目内容
某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,并将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名25周岁以下的工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“生产能手与工人的年龄有关”?

附表及公示
K2=
.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名25周岁以下的工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“生产能手与工人的年龄有关”?
附表及公示
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;
(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.
(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.
解答:
解:(1)由已知可得,样本中有25周岁以上组工人100×
=60名,
25周岁以下组工人100×
=40名,
所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),
25周岁以下组工人有40×0.05=2(人),
故从中随机抽取2名工人所有可能的结果共
=10种,
其中至少1名“25周岁以下组”工人的结果共
+
=7种,
故所求的概率为:
;
(2)由频率分布直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),
“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:
所以可得K2=
≈1.79,
因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.
| 300 |
| 300+200 |
25周岁以下组工人100×
| 200 |
| 300+200 |
所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),
25周岁以下组工人有40×0.05=2(人),
故从中随机抽取2名工人所有可能的结果共
| C | 2 5 |
其中至少1名“25周岁以下组”工人的结果共
| C | 1 3 |
| C | 1 2 |
| C | 2 2 |
故所求的概率为:
| 7 |
| 10 |
(2)由频率分布直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),
“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:
| 生产能手 | 非生产能手 | 合计 | |
| 25周岁以上组 | 15 | 45 | 60 |
| 25周岁以下组 | 15 | 25 | 40 |
| 合计 | 30 | 70 | 100 |
| 100×(15×25-15×45)2 |
| 60×40×30×70 |
因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.
点评:本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题.
练习册系列答案
相关题目
曲线f(x)=x3+x-2在P0点处的切线平行于直线y=4x-3,则P0点的坐标为( )
| A、(-1,-4) |
| B、(0,1) |
| C、(1,0) |
| D、(1,0)或(-1,-4) |