题目内容

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.
考点:数列与不等式的综合,等比数列的性质
专题:计算题,等差数列与等比数列
分析:(Ⅰ) 当n=1时,a1=S1=2-a.当n≥2时,an=Sn-Sn-1=2n-1.由此能求出an=2n-1.设数列{bn}的公差为d,由b1=3,(b4+5)2=(b2+5)(b8+5),得(8+3d)2=(8+d)(8+7d),由此能求出bn=8n-5.
(Ⅱ)由an=2n-1,知log
2
an
=2(n-1),故Tn=n(n-1),由此能求出使Tn>bn的最小正整数n的值.
解答: 解:(Ⅰ) 当n=1时,a1=S1=2-a.
当n≥2时,an=Sn-Sn-1=2n-1
所以1=2-a,得a=1,
an=2n-1
设数列{bn}的公差为d,
由b1=3,(b4+5)2=(b2+5)(b8+5),得(8+3d)2=(8+d)(8+7d),
故d=0(舍去)或d=8.
所以a=1,bn=8n-5,n∈N*.…(7分)
(Ⅱ)由an=2n-1,知log
2
an
=2(n-1),
∴Tn=n(n-1),
由bn=8n-5,Tn>bn,得n2-9n+5>0,
∴n∈N*,∴n≥9.
所以,所求的n的最小值为9.…(14分)
点评:本题主要考查等差、等比数列的概念,通项公式及求和公式等基础知识,同时考查运算求解能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网