ÌâÄ¿ÄÚÈÝ
11£®Ä³É̳¡¾ÙÐÐÓн±´ÙÏú»î¶¯£¬¹Ë¿Í¹ºÂòÒ»¶¨½ð¶îµÄÉÌÆ·ºó¼´¿É³é½±£¬Ò»µÈ½±500Ôª£¬¶þµÈ½±200Ôª£¬ÈýµÈ½±10Ôª£®³é½±¹æÔòÈçÏ£»¹Ë¿ÍÏÈ´Ó×°ÓÐ2¸öºìÇò¡¢4¸ö°×ÇòµÄ¼×ÏäÖÐËæ»úÃþ³öÁ½Çò£¬ÔÙ´Ó×°ÓÐ1¸öºìÇò¡¢2¸öºÚÇòµÄÒÒÏäËæ»úÃþ³öÒ»Çò£¬ÔÚÃþ³öµÄ3¸öÇòÖУ¬Èô¶¼ÊǺìÇò£¬Ôò»ñÒ»µÈ½±£»ÈôÓÐ2¸öºìÇò£¬Ôò»ñ¶þµÈ½±£»ÈôÈýÖÖÑÕÉ«¸÷Ò»¸ö£¬Ôò»ñÈýµÈ½±£¬ÆäËüÇé¿ö²»»ñ½±£®£¨I£©Éèij¹Ë¿ÍÔÚÒ»´Î³é½±ÖÐËùµÃ½±½ðÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨¢ò£©Èôij¸öʱ¼ä¶ÎÓÐÈýλ¹Ë¿Í²Î¼Ó³é½±£¬ÇóÖÁ¶àÓÐһλ»ñ½±µÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªµÃXµÄ¿ÉÄÜȡֵΪ500£¬200£¬10£¬0£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍËæ»ú±äÁ¿XµÄÊýѧÆÚÍû£®
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÔÚÒ»´ÎÃþ½±ÖеĻñ½±¸ÅÂÊΪ£º1-P£¨X=0£©=$\frac{3}{5}$£¬ÓÉ´ËÄÜÇó³öÈýÈËÖÐÖÁ¶àÒ»ÈË»ñ½±µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖªµÃXµÄ¿ÉÄÜȡֵΪ500£¬200£¬10£¬0£¬
P£¨X=500£©=$\frac{{C}_{2}^{2}{C}_{1}^{1}}{{C}_{6}^{2}{C}_{3}^{1}}$=$\frac{1}{45}$£¬
P£¨X=200£©=$\frac{{C}_{2}^{2}{C}_{2}^{1}+{C}_{2}^{1}{C}_{4}^{1}{C}_{1}^{1}}{{C}_{6}^{2}{C}_{3}^{1}}$=$\frac{10}{45}$£¬
P£¨X=10£©=$\frac{{C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}{C}_{3}^{1}}$=$\frac{16}{45}$£¬
P£¨X=0£©=1-$\frac{1}{45}-\frac{10}{45}-\frac{16}{45}$=$\frac{18}{45}$£¬
¡àËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º
| X | 500 | 200 | 10 | 0 |
| P | $\frac{1}{45}$ | $\frac{10}{45}$ | $\frac{16}{45}$ | $\frac{18}{45}$ |
EX=$500¡Á\frac{1}{45}+200¡Á\frac{10}{45}+10¡Á\frac{16}{45}$=$\frac{532}{9}$£®
£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÔÚÒ»´ÎÃþ½±ÖеĻñ½±¸ÅÂÊΪ£º
1-P£¨X=0£©=1-$\frac{18}{45}$=$\frac{3}{5}$£¬
¡àÈýÈËÖÐÖÁ¶àÒ»ÈË»ñ½±µÄ¸ÅÂÊΪ£º${C}_{3}^{1}•\frac{3}{5}•£¨\frac{2}{5}£©^{2}+£¨\frac{2}{5}£©^{3}$=$\frac{44}{125}$£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»úµÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
| A£® | $\frac{8}{17}$ | B£® | $\frac{9}{19}$ | C£® | $\frac{10}{21}$ | D£® | $\frac{11}{23}$ |
| A£® | 0 | B£® | -1»ò1 | C£® | -1 | D£® | 1 |
| A£® | £¨10£¬12£© | B£® | [10£¬12£© | C£® | £¨10£¬12] | D£® | [10£¬12] |