题目内容
3.已知直线l:ax+y+b=0与圆O:x2+y2=4相交于A、B两点,$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,则$\sqrt{3}ab$等于( )| A. | -3 | B. | -4 | C. | 3 | D. | 4 |
分析 由题意,可得直线l与直线OM垂直,且圆心O到直线l的距离为$\frac{2}{3}$,建立方程,求出a,b,即可得出结论.
解答 解:∵$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,∴直线l与直线OM垂直,且圆心O到直线l的距离为$\frac{2}{3}$,
即$\left\{\begin{array}{l}a=-\sqrt{3}\\ \frac{b}{{\sqrt{{a^2}+1}}}=\frac{2}{3}\end{array}\right.$,解得$\left\{\begin{array}{l}a=-\sqrt{3}\\ b=\frac{4}{3}.\end{array}\right.$,则$\sqrt{3}ab=-4$.
故选B.
点评 本题考查直线与圆的位置关系,考查向量知识的运用,体现方程思想,属于中档题.
练习册系列答案
相关题目
13.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表:
经计算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
参照附表,得到的正确结论是( )
经计算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
| 做不到“光盘”行动 | 做到“光盘”行动 | |
| 男 | 45 | 10 |
| 女 | 30 | 15 |
| P(X2≥x0) | 0.10 | 0.05 | 0.025 |
| x0 | 2.706 | 3.841 | 5.024 |
| A. | 在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关” | |
| B. | 在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关” | |
| C. | 有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关” | |
| D. | 有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关” |
11.已知定点F1(-2,0)与F2(2,0),动点M满足|MF1|-|MF2|=4,则点M的轨迹方程是( )
| A. | $\frac{x^2}{16}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$ | C. | y=0(|x|≥2) | D. | y=0(x≥2) |
15.已知定义域为R的函数 f (x)的导函数为f'(x),且满足f'(x)-2f (x)>4,若 f (0)=-1,则不等式f(x)+2>e2x的解集为( )
| A. | (0,+∞)?? | B. | (-1,+∞)?? | C. | (-∞,0)? | D. | (-∞,-1) |
12.若角α的终边经过点P(4,-3),则sinα=( )
| A. | ±$\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | ±$\frac{4}{5}$ |
9.利用独立性检验考察两个分类变量X与Y是否有关系时,若K2的观测值k=6.132,则有97.5%的把握认为“X与Y有关系”.
| P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 |