题目内容

11.已知定点F1(-2,0)与F2(2,0),动点M满足|MF1|-|MF2|=4,则点M的轨迹方程是(  )
A.$\frac{x^2}{16}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$C.y=0(|x|≥2)D.y=0(x≥2)

分析 设出M的坐标,利用两点间的距离公式和题设等式建立方程,平方后化简整理求得y=0,同时|MF1|>|MF2|,可推断出 动点M的轨迹,是一条射线,起点是(2,0),方向同x轴正方向.

解答 解:假设M(x,y),根据|MF1|-|MF2|=2,可以得到:$\sqrt{(x+1)^{2}+{y}^{2}}$-$\sqrt{(x-1)^{2}+{y}^{2}}$=2,
两边平方,化简可以得到y=0,又因为|F1F2|=2,且|MF1|>|MF2|,
所以:动点M的轨迹,是一条射线,起点是(2,0),方向同x轴正方向.
故选D

点评 本题主要考查了轨迹方程.考查了学生分析问题和解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网