题目内容

Express each of the following as a single trigonometric (in degress).[把下列式子表示为单一的三角函数值]
(1)cosθ+sinθ;
(2)
3
cosθ-sinθ;
(3)3sinθ+4cosθ;
(4)sinθ-
2
cosx.
考点:三角函数的最值
专题:三角函数的求值
分析:利用asinθ+bcosθ=
a2+b2
=sin(θ+φ),其中φ=arctan
b
a
,即可得出.
解答: 解:(1)cosθ+sinθ=
2
(
2
2
sinθ+
2
2
cosθ)
=
2
sin(θ+
π
4
)

(2)
3
cosθ-sinθ=2(
3
2
cosθ-
1
2
sinθ)
=2cos(θ+
π
6
)

(3)3sinθ+4cosθ=5(
3
5
sinθ+
4
5
cosθ)
=5sin(θ+φ),其中φ=arctan
4
3

(4)sinθ-
2
cosθ=
3
(
3
3
sinθ-
6
3
cosθ)
=
3
sin(θ-φ),其中φ=arctan
2
点评:本题考查了asinθ+bcosθ=
a2+b2
=sin(θ+φ)的应用、考查了两角和差的正弦公式,考查了计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网