题目内容

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x}+1,x≤1\\ 1-{log_2}x,x>1\end{array}\right.$,则满足不等式f(1-m2)>f(2m-2)的m的取值范围是(  )
A.(-3,1)B.$(\frac{3}{2},+∞)$C.(-3,1)∪$(\frac{3}{2},+∞)$D.$(-3,\frac{3}{2})$

分析 当x≤1时,f(x)=2x+1为增函数,则f(x)>1,当x>1时,f(x)=1-log2x为减函数,则f(x)<1,满足不等式f(1-m2)>f(2m-2),化为关于m的不等式组,解得即可.

解答 解:当x≤1时,f(x)=2x+1为增函数,则f(x)≥1,
当x>1时,f(x)=1-log2x为减函数,则f(x)<1,
∵f(1-m2)>f(2m-2),
∴$\left\{\begin{array}{l}{1-{m}^{2}≤1}\\{2m-2≤1}\\{1-{m}^{2}>2m-2}\end{array}\right.$或$\left\{\begin{array}{l}{1-{m}^{2}>1}\\{2m-2>1}\\{1-{m}^{2}<2m-2}\end{array}\right.$或$\left\{\begin{array}{l}{1-{m}^{2}≤1}\\{2m-2>1}\\{1-{m}^{2}>2m-2}\end{array}\right.$,
解得-3<m<1或x>$\frac{3}{2}$,
故选:C.

点评 本题考查了分段函数和不等式组的解集,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网