题目内容

3.(Ⅰ)化简$\frac{cos(α-\frac{3}{2}π)}{sin(\frac{π}{2}+α)}$•sin(α-π)•cos(2π-α);
(Ⅱ)已知sin θ=$\frac{12}{13}$,θ为锐角,求cos($\frac{π}{4}$-θ).

分析 (Ⅰ)利用诱导公式化简即可;
(Ⅱ)根据平方公式求出cosθ的值,再利用两角差的余弦公式求值即可.

解答 解:(Ⅰ)$\frac{cos(α-\frac{3}{2}π)}{sin(\frac{π}{2}+α)}$•sin(α-π)•cos(2π-α)
=$\frac{-sinα}{cosα}$•(-sinα)•cosα
=sin2α;
(Ⅱ)sin θ=$\frac{12}{13}$,θ为锐角,
∴cosθ=$\sqrt{1{-sin}^{2}θ}$=$\frac{5}{13}$
∴cos($\frac{π}{4}$-θ)=cos$\frac{π}{4}$cosθ+sin$\frac{π}{4}$sinθ
=$\frac{\sqrt{2}}{2}$×$\frac{5}{13}$+$\frac{\sqrt{2}}{2}$×$\frac{12}{13}$
=$\frac{17\sqrt{2}}{26}$.

点评 本题考查了三角函数诱导公式与求值计算问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网