题目内容
设数列{an}的前n项和为Sn,已知a1=2,3Sn-(-2)n+2=an+1-6.
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,有
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 7 |
| 12 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得3an-(-2)n+2+(-2)n+1=an+1-an,从而{
-1}是首项为-2,公比为-2的等比数列,由此能求出an=4n+(-2)n.
(2)由已知得
=
,
=
,
=
,
=
,
≤
=
-
,从而
+
+…+
<
+
+
+
+(
-
+…+
-
),由此能证明
+
+…+
<
.
| an |
| (-2)n |
(2)由已知得
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| a2 |
| 1 |
| 20 |
| 1 |
| a3 |
| 1 |
| 56 |
| 1 |
| a4 |
| 1 |
| 272 |
| 1 |
| an |
| 1 |
| 2n(2n-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 56 |
| 1 |
| 272 |
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 7 |
| 12 |
解答:
(1)解:∵a1=2,3Sn-(-2)n+2=an+1-6,①
∴3Sn-1-(-2)n+1=an-6.②
①-②,得3an-(-2)n+2+(-2)n+1=an+1-an,
整理,得an+1=4an+3(-2)n+1,
∴
=(-2)•
+3,
∴
-1=-2[
-1],
又
-1=-2,
∴{
-1}是首项为-2,公比为-2的等比数列,
∴
-1=(-2)n,
∴an=4n+(-2)n.
(2)证明:∵an=4n+(-2)n=(-2)2n+(-2)n=(-2n)[(-2)n+1],
∴
=
=
-
,
∴
+
+…+
=1-
+
-
+
-
+…+
-
,
=
,
=
,
=
,
=
,
∵4n+(-2)n≥4n-2n=2n(2n-1),
∴
≤
=
-
,
∴
+
+…+
<
+
+
+
+(
-
+…+
-
),
下面估算
-
+…+
-
的值,
令
-
+…+
-
=t,
则
-
+…+
-
<
-
+…+
-
-
=
(
-
+…+
-
)
=
(
-
+
-
-
+…+
-
)-
(
-
),
即t<
(
-
)+
-
(
-
)<
(
-
)+
,
得t<
-
=
,
∴
+
+…+
<
+
+
+
+
<
.
∴3Sn-1-(-2)n+1=an-6.②
①-②,得3an-(-2)n+2+(-2)n+1=an+1-an,
整理,得an+1=4an+3(-2)n+1,
∴
| an+1 |
| (-2)n+1 |
| an |
| (-2)n |
∴
| an+1 |
| (-2)n+1 |
| an |
| (-2)n |
又
| a1 |
| -2 |
∴{
| an |
| (-2)n |
∴
| an |
| (-2)n |
∴an=4n+(-2)n.
(2)证明:∵an=4n+(-2)n=(-2)2n+(-2)n=(-2n)[(-2)n+1],
∴
| 1 |
| an |
| 1 |
| (-2)n[(-2)n+1] |
| 1 |
| (-2)n |
| 1 |
| (-2)n+1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 8 |
| 1 |
| (-2)n |
| 1 |
| (-2)n+1 |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| a2 |
| 1 |
| 20 |
| 1 |
| a3 |
| 1 |
| 56 |
| 1 |
| a4 |
| 1 |
| 272 |
∵4n+(-2)n≥4n-2n=2n(2n-1),
∴
| 1 |
| an |
| 1 |
| 2n(2n-1) |
| 1 |
| 2n-1 |
| 1 |
| 2n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 56 |
| 1 |
| 272 |
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
下面估算
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
令
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
则
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
<
| 1 |
| 25-2 |
| 1 |
| 25 |
| 1 |
| 2n-2 |
| 1 |
| 2n |
| 1 |
| 2n |
=
| 1 |
| 2 |
| 1 |
| 24-1 |
| 1 |
| 24 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
=
| 1 |
| 2 |
| 1 |
| 24-1 |
| 1 |
| 24 |
| 1 |
| 25-1 |
| 1 |
| 25 |
| 1 |
| 25 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
即t<
| 1 |
| 2 |
| 1 |
| 24-1 |
| 1 |
| 24 |
| t |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 24-1 |
| 1 |
| 24 |
| t |
| 2 |
得t<
| 1 |
| 24-1 |
| 1 |
| 24 |
| 1 |
| 240 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 56 |
| 1 |
| 272 |
| 1 |
| 240 |
| 7 |
| 12 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
若a>b且ab>0,则有( )
| A、a2>b2 | ||||
| B、a2<b2 | ||||
C、
| ||||
D、
|