题目内容

设数列{an}的前n项和为Sn,已知a1=2,3Sn-(-2)n+2=an+1-6.
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,有
1
a1
+
1
a2
+…+
1
an
7
12
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得3an-(-2)n+2+(-2)n+1=an+1-an,从而{
an
(-2)n
-1
}是首项为-2,公比为-2的等比数列,由此能求出an=4n+(-2)n
(2)由已知得
1
a1
=
1
2
1
a2
=
1
20
1
a3
=
1
56
1
a4
=
1
272
1
an
1
2n(2n-1)
=
1
2n-1
-
1
2n
,从而
1
a1
+
1
a2
+…+
1
an
1
2
+
1
20
+
1
56
+
1
272
+(
1
25-1
-
1
25
+…+
1
2n-1
-
1
2n
),由此能证明
1
a1
+
1
a2
+…+
1
an
7
12
解答: (1)解:∵a1=2,3Sn-(-2)n+2=an+1-6,①
∴3Sn-1-(-2)n+1=an-6.②
①-②,得3an-(-2)n+2+(-2)n+1=an+1-an
整理,得an+1=4an+3(-2)n+1
an+1
(-2)n+1
=(-2)•
an
(-2)n
+3,
an+1
(-2)n+1
-1=-2[
an
(-2)n
-1]

a1
-2
-1=-2

∴{
an
(-2)n
-1
}是首项为-2,公比为-2的等比数列,
an
(-2)n
-1=(-2)n

∴an=4n+(-2)n
(2)证明:∵an=4n+(-2)n=(-2)2n+(-2)n=(-2n)[(-2)n+1],
1
an
=
1
(-2)n[(-2)n+1]
=
1
(-2)n
-
1
(-2)n+1

1
a1
+
1
a2
+…+
1
an
=1-
1
2
+
1
4
-
1
5
+
1
7
-
1
8
+…+
1
(-2)n
-
1
(-2)n+1

1
a1
=
1
2
1
a2
=
1
20
1
a3
=
1
56
1
a4
=
1
272

∵4n+(-2)n≥4n-2n=2n(2n-1),
1
an
1
2n(2n-1)
=
1
2n-1
-
1
2n

1
a1
+
1
a2
+…+
1
an
1
2
+
1
20
+
1
56
+
1
272
+(
1
25-1
-
1
25
+…+
1
2n-1
-
1
2n
),
下面估算
1
25-1
-
1
25
+…+
1
2n-1
-
1
2n
的值,
1
25-1
-
1
25
+…+
1
2n-1
-
1
2n
=t,
1
25-1
-
1
25
+…+
1
2n-1
-
1
2n

1
25-2
-
1
25
+…+
1
2n-2
-
1
2n
-
1
2n

=
1
2
1
24-1
-
1
24
+…+
1
2n-1-1
-
1
2n-1

=
1
2
1
24-1
-
1
24
+
1
25-1
-
1
25
-
1
25
+…+
1
2n-1
-
1
2n 
)-
1
2
1
2n-1
-
1
2n
),
即t<
1
2
1
24-1
-
1
24
)+
t
2
-
1
2
1
2n-1
-
1
2n
)<
1
2
1
24-1
-
1
24
)+
t
2

得t<
1
24-1
-
1
24
=
1
240

1
a1
+
1
a2
+…+
1
an
1
2
+
1
20
+
1
56
+
1
272
+
1
240
7
12
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网