ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¾¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êԵ㣬Èô${k_{OA}}•{k_{OB}}=-\frac{1}{2}$£¬Çó$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÍÖÔ²¾¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©$ÓÉ\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=8\end{array}\right.µÃ£º£¨1+2{k^2}£©{x^2}+4kmx+2{m^2}-8=0$£¬ÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý£¬½áºÏÒÑÖªÌõ¼þ£¬ÄÜÇó³ö$\overrightarrow{OA}•\overrightarrow{OB}$µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¾¹ýµã$P£¨2£¬\sqrt{2}£©$£¬Ò»¸ö½¹µãFµÄ×ø±êΪ£¨2£¬0£©£®
¡à$\left\{\begin{array}{l}{\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1}\\{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2$\sqrt{2}$£¬b=2£¬c=2£¬¡£¨3·Ö£©
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®¡£¨4·Ö£©
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$ÓÉ\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=8\end{array}\right.µÃ£º£¨1+2{k^2}£©{x^2}+4kmx+2{m^2}-8=0$¡£¨5·Ö£©
¡÷=16k2m2-4£¨1+2k2£©£¨2m2-8£©=64k2-8m2+32£¾0£¬¼´m2£¼8k2+4¡£¨6·Ö£©
${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$£¬¡£¨7·Ö£©
y1y2=k2x1x2+mk£¨x1+x2£©+m2=$\frac{2{k}^{2}{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$-$\frac{4{k}^{2}{m}^{2}}{1+2{k}^{2}}$+m2=$\frac{{m}^{2}-8{k}^{2}}{1+2{{k}^{2}}_{\;}}$£¬¡£¨8·Ö£©
¡ß${k_{OA}}•{k_{OB}}=-\frac{1}{2}$£¬
¡àkOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{{m}^{2}-8{k}^{2}}{2{m}^{2}-8}$=-$\frac{1}{2}$£¬
¡à4m2-16k2=8£¬¼´m2=4k2+2£¬¹Ê4k2+2£¼8k2+4£¬
½âµÃk¡ÊR¡£¨9·Ö£©
$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}+\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=\frac{{3{m^2}-8{k^2}-8}}{{1+2{k^2}}}$=$\frac{{4{k^2}-2}}{{1+2{k^2}}}=2-\frac{4}{{2{k^2}+1}}$£¬¡£¨11·Ö£©
$¹Ê\overrightarrow{OA}•\overrightarrow{OB}µÄȡֵ·¶Î§Îª[-2£¬2£©$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ö±Ïß·½³Ì¡¢¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓ뷽˼Ï룬ÊÇÖеµÌ⣮
| ×éºÅ | ÄêÁä | ·Ã̸ÈËÊý | Ô¸ÒâʹÓà |
| 1 | [18£¬28£© | 4 | 4 |
| 2 | [28£¬38£© | 9 | 9 |
| 3 | [38£¬48£© | 16 | 15 |
| 4 | [48£¬58£© | 15 | 12 |
| 5 | [58£¬68£© | 6 | 2 |
£¨¢ò£©Èô´ÓµÚ5×éµÄ±»µ÷²éÕß·Ã̸ÈËÖÐËæ»úѡȡ2È˽øÐÐ×·×Ùµ÷²é£¬Çó2ÈËÖÐÖÁÉÙÓÐ1ÈËÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±Ìײ͵ĸÅÂÊ£®
£¨¢ó£©°´ÒÔÉÏͳ¼ÆÊý¾ÝÌîдÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÒÔ48ËêΪ·Ö½çµã£¬ÄÜ·ñÔÚ·¸´íÎó²»³¬¹ý1%µÄǰÌáÏÂÈÏΪ£¬ÊÇ·ñÔ¸ÒâÑ¡Ôñ´Ë¿î¡°Á÷Á¿°ü¡±ÌײÍÓëÈ˵ÄÄêÁäÓйأ¿
| ÄêÁä²»µÍÓÚ48ËêµÄÈËÊý | ÄêÁäµÍÓÚ48ËêµÄÈËÊý | ºÏ¼Æ | |
| Ô¸ÒâʹÓõÄÈËÊý | |||
| ²»Ô¸ÒâʹÓõÄÈËÊý | |||
| ºÏ¼Æ |
| P£¨k2¡Ýk0£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A£® | 12¦Ðcm2 | B£® | 6 cm2 | C£® | 6¦Ðcm2 | D£® | 4 cm2 |